Mental Poker Revisited

  • Adam Barnett
  • Nigel P. Smart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2898)


We discuss how to implement a secure card game without the need for a trusted dealer, a problem often denoted “Mental Poker” in the literature. Our solution requires a broadcast channel between all players and the number of bits needed to represent each card is independent of the number of players. Traditional solutions to “Mental Poker” require a linear relation between the number of players and the number of bits required to represent each card.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banary, I., Furedi, Z.: Mental poker with three or more players. Information and Control 59, 84–93 (1983)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. J. ACM 48, 702–722 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    Cramer, R., Damgåard, I., Schoenmakers, B.: Proofs of partial knowledge. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Crépeau, C.: A secure poker protocol that minimises the effect of player coalitions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 73–86. Springer, Heidelberg (1986)Google Scholar
  7. 7.
    Crépeau, C.: A zero-knowledge poker protocol that achieves confidentiality of the player’s strategy, or how to achieve an electronic poker face. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 239–247. Springer, Heidelberg (1987)Google Scholar
  8. 8.
    Damgåard, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Fortune, S., Merrit, M.: Poker protocols. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 454–464. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  10. 10.
    Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: STOC 1982, pp. 365–377 (1982)Google Scholar
  11. 11.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Systems Sciences 28, 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Goldreich, O., Micali, S., Widgerson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229 (1987)Google Scholar
  13. 13.
    Paillier, P.: Public key cryptosystems based on composite residue classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13, 361–396 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Shamir, A., Rivest, R., Adleman, L.: Mental Poker. MIT Technical Report (1978)Google Scholar
  16. 16.
    Schindelhauer, C.: A toolbox for mental card games. Technical Report, Uni Lubeck (1998)Google Scholar
  17. 17.
    Yung, M.: Subscription to a public key, the secret blocking and the multi-party poker game. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 439–453. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Adam Barnett
    • 1
  • Nigel P. Smart
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolBristolUnited Kingdom

Personalised recommendations