Protocols for distributed systems make often use of random transitions to achieve a common goal. A popular example are randomized leader election protocols. We introduce probabilistic product automata (PPA) as a natural model for this kind of systems. To reason about these systems, we propose to use a product version of linear temporal logic (\(\textup{LTL}^{\!\otimes}\)). The main result of the paper is a model-checking procedure for PPA and \(\textup{LTL}^{\!\otimes}\). With its help, it is possible to check qualitative properties of distributed systems automatically.


Model Check Linear Temporal Logic Strongly Connect Component Linear Temporal Logic Formula Nondeterministic Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BGJ99]
    Beauquier, J., Gradinariu, M., Johnen, C.: Randomized self-stabilizing and space optimal leader election under arbitrary scheduler on rings. Technical Report 99-1225, Université Paris Sud (1999)Google Scholar
  2. [CES83]
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state concurrent systems using temporal logic specifications: A practical approach. In: Conference Record of the Tenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, January 24–26, pp. 117–126. ACM SIGACT-SIGPLAN, New York (1983)Google Scholar
  3. [CW96]
    Clarke, E.M., Wing, J.M.: Formal methods: State of the art and future directions. ACM Computing Surveys 28(4), 626–643 (1996)CrossRefGoogle Scholar
  4. [CY95]
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [GTW02]
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  6. [HS84]
    Hart, S., Sharir, M.: Probabilistic temporal logics for finite and bounded models. In: ACM Symposium on Theory of Computing (STOC 1984), Baltimore, USA, April 1984, pp. 1–13. ACM Press, New York (1984)CrossRefGoogle Scholar
  7. [Leu02]
    Leucker, M.: Logics for Mazurkiewicz traces. PhD thesis, Lehrstuhl für Informatik II, RWTH Aachen (2002)Google Scholar
  8. [LR81]
    Lehman, D., Rabin, M.O.: On the advantage of free choice: A fully symmetric and fully distributed solution to the dining philosophers problem. In: Proceedings of 10th ACM Symposium of Principles of Programming Languages, Williamsburg, pp. 133–138 (1981)Google Scholar
  9. [LS82]
    Lehmann, D., Shelah, S.: Reasoning with time and chance. Information and Control 53(3), 165–198 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [MD97]
    Madhusudan, P., D’Souza, D.: On-the-fly verification of Product- LTL. In: Proocedings of the National Seminar on Theoretical Computer Science, Madras (June 1997)Google Scholar
  11. [Pnu77]
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on the Foundations of Computer Science (FOCS 1977), Providence, Rhode Island, October 31–November 2, pp. 46–57. IEEE Computer Society Press, Los Alamitos (1977)CrossRefGoogle Scholar
  12. [PRRR01]
    Pardalos, P., Rajasekaran, S., Reif, J., Rolim, J. (eds.): Handbook on Randomized Computing, June 2001. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  13. [QS82]
    Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)Google Scholar
  14. [Thi95]
    Thiagarajan, P.S.: PTL over product state spaces. Technical Report TCS- 95-4, School of Mathematics, SPIC Science Foundation (1995)Google Scholar
  15. [Var85]
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finitestate programs. In: 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, October 21–23, pp. 327–338. IEEE, Los Alamitos (1985)CrossRefGoogle Scholar
  16. [VW86]
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Symposium on Logic in Computer Science (LICS 1986), Washington, D.C., USA, June 1986, pp. 332–345. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Benedikt Bollig
    • 1
  • Martin Leucker
    • 2
  1. 1.Lehrstuhl für Informatik IIRWTH AachenGermany
  2. 2.IT departmentUppsala UniversitySweden

Personalised recommendations