Formal Semantics of Hybrid Chi

  • R. R. H. Schiffelers
  • D. A. van Beek
  • K. L. Man
  • M. A. Reniers
  • J. E. Rooda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2791)


The verification formalism / modeling and simulation language hybrid Chi is defined. The semantics of hybrid Chi is formally specified using Structured Operational Semantics (SOS) and a number of associated functions. The χ syntax and semantics can also deal with local scoping of variables and/or channels, implicit differential algebraic equations, such as higher index systems, and they are very well suited for specification of pure discrete event systems.


Time Transition Formal Semantic Parallel Composition Process Term Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Beek, D.A., van den Ham, A., Rooda, J.E.: Modelling and control of process industry batch production systems. In: 15th Triennial World Congress of the International Federation of Automatic Control, Barcelona (2002) CD-ROMGoogle Scholar
  2. 2.
    Bos, V., Kleijn, J.J.T.: Formal Specification and Analysis of Industrial Systems. PhD thesis, Eindhoven University of Technology (2002)Google Scholar
  3. 3.
    Bos, V., Kleijn, J.J.T.: Automatic verification of a manufacturing system. Robotics and Computer Integrated Manufacturing 17, 185–198 (2000)CrossRefGoogle Scholar
  4. 4.
    Schiffelers, R.R.H., van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E.: A hybrid language for modeling, simulation and verification. In: Engell, S., Guéguen, H., Zaytoon, J. (eds.) IFAC Conference on Analysis and Design of Hybrid Systems, Saint-Malo, Brittany, France, pp. 235–240 (2003)Google Scholar
  5. 5.
    Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. Technical Report Computer Science Reports 03-07, Eindhoven University of Technology, Department of Computer Science, The Netherlands (2003) Google Scholar
  6. 6.
    Rounds, W.C., Song, H.: The φ-calculus - a hybrid extension of the π-calculus to embedded systems. Technical Report CSE 458-02, University of Michigan, USA (2002) Google Scholar
  7. 7.
    Jifeng, H.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) A Classical Mind, Essays in Honour of C.A.R. Hoare, pp. 171–189. Prentice-Hall, Englewood Cliffs (1994)Google Scholar
  8. 8.
    Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    David, R., Alla, H.: On hybrid Petri nets. Discrete Event Dynamic Systems: Theory & Applications 11, 9–40 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Technical Report MIT-LCS-TR-827d, MIT Laboratory for Computer Science, Cambridge, MA 02139 (2003) (to appear in Information and Computation) Google Scholar
  11. 11.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Alur, R., Dang, T., Esposito, J., Hur, Y., Ivancic, F., Kumar, V., Lee, I., Mishra, P., Pappas, G.J., Sokolsky, O.: Hierarchical modeling and analysis of embedded systems. Proceedings of the IEEE 91, 11–28 (2003)CrossRefGoogle Scholar
  13. 13.
    Henzinger, T.A.: Masaccio: A formal model for embedded components. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 549–563. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Mosterman, P.J., Ciolfi, J.E.: Embedded code generation for efficient reinitialization. In: 15th Triennial World Congress of the International Federation of Automatic Control (2002) CD-ROMGoogle Scholar
  15. 15.
    Cuijpers, P.J.L., Reniers, M.A., Heemels, W.P.M.H.: Hybrid transition systems. Technical Report Computer Science Reports 02-12, Eindhoven University of Technology, Department of Computer Science, The Netherlands (2002)Google Scholar
  16. 16.
    Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded systems. IEEE Transactions on Software Engineering 22, 102–119 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • R. R. H. Schiffelers
    • 1
  • D. A. van Beek
    • 1
  • K. L. Man
    • 1
  • M. A. Reniers
    • 1
  • J. E. Rooda
    • 1
  1. 1.Department of Mechanical Engineering and Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations