MR Compatible Surgical Assist Robot: System Integration and Preliminary Feasibility Study

  • Kiyoyuki Chinzei
  • Nobuhiko Hata
  • Ferenc A. Jolesz
  • Ron Kikinis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1935)

Abstract

A magnetic resonance (MR) compatible surgical assist robot system under preclinical evaluation is described. It is designed to coexist, and cooperate, with a surgeon, and to position and direct an axisymmetric tool, such as a laser pointer or a biopsy catheter. The main mechanical body is located above the head of the surgeon, and two rigid arms extend to the workspace. This configuration contributes to a small occupancy in the surgeon’s workspace, and good MR compatibility.

The design of the robot is described. The MR compatibility is examined, and shows that there is no adverse effect on the imaging, even when the robot is in motion. Any heating effect was not evaluated, because a published study has revealed any effect is quite small. This robot system is carefully designed for safety and sterilization issues.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Villotte, N., Glauser, D., Flury, P., et al.: Conception of Stereotactic Instruments for the Neurosurgical Robot Minerva. In: Proc. IEEE ICRA, pp. 1089–1090 (1992)Google Scholar
  2. 2.
    Taylor, R.H., Mitterlstadt, B.D., Paul, H.A., et al.: An Image-Directed Robotic System for Precise Orthopedic Surgery. In: Taylor, R.H., et al. (eds.) Computer- Integrated Surgery: Technology and Clinical Applications, pp. 379–395. MIT Press, Cambridge (1995)Google Scholar
  3. 3.
    Sackier, J.M., Wang, Y.: Robotically Assisted Laparoscopic Surgery: from Concept to Development. In: Taylor, R.H., et al. (eds.) Computer-Integrated Surgery: Technology and Clinical Applications, pp. 577–580. MIT Press, Cambridge (1995)Google Scholar
  4. 4.
    Schenker, P.S., Das, H., Ohm, T.R.: A New Robot for High Dexterity Microsurgery. In: Ayache, N. (ed.) CVRMed 1995. LNCS, vol. 905, pp. 115–122. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Schenck, J.F., Jolesz, F.A., Roemer, P.B., et al.: Superconducting Open- Configuration MR Imaging System for Image-Guided Therapy. Radiology 195(3), 805–814 (1995)Google Scholar
  6. 6.
    Silverman, S.G., Collick, B.D., Figueira, M.R., et al.: InteractiveMR-guided biopsy in an open-configuration MR imaging system. Radiology 197, 175–181 (1995)Google Scholar
  7. 7.
    Hata, N., Morrison, P.R., Kettenbach, J., Black, P., Kikinis, R., Jolesz, F.A.: Computer-assisted Intra-Operative Magnetic Resonance Imaging Monitoring of Interstitial Laser Therapy in the Brain: A Case Report. J. Biomedical. Optics 3(3), 304–311 (1998)CrossRefGoogle Scholar
  8. 8.
    Schenck, J.F.: The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23(6), 815–850 (1996)CrossRefGoogle Scholar
  9. 9.
    GE Medical Systems (ed.): MR Safety and MR Compatibility: Test Guidelines for Signa SPTM (1997), http://www.ge.com/medical/mr/iomri/safety.htm
  10. 10.
    Masamune, K., Kobayashi, E., Masutani, Y., et al.: Development of an MRI compatible Needle Insertion Manipulator for Stereotactic Neurosurgery. J. Image Guided Surgery 1, 242–248 (1995)CrossRefGoogle Scholar
  11. 11.
    Chinzei, K., Kikinis, R., Jolesz, F.A.: MR Compatibility of Mechatronic Devices: Design Criteria. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1020–1031. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Schorr, O., Hata, N., Bzostek, A., Kumar, R., Burghart, C., Taylor, R.H., Kikinis, R.: Distributed Modular Computer-Integrated Surgical Robotic Systems: Architecture for Intelligent Object Distribution. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 979–987. Springer, Heidelberg (2000) (printing)Google Scholar
  13. 13.
    Gering, D., Nabavi, A., Kikinis, R., Eric, W., Grimson, L., Hata, N., et al.: An Integrated Visualization System for Surgical Planning and Guidance using Image Fusion and Interventional Imaging. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 809–819. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Buchili, R., Boesiger, P., Meier, D.: Heating Effects of Metallic Implants by MRI Examinations. Magnet. Reson. Med. 7, 255–261 (1988)CrossRefGoogle Scholar
  15. 15.
    Koseki, Y., Chinzei, K., Koyachi, N., Arai, T.: Robotic Assist for MR-Guided Surgery Using Leverage and Palallelepiped Mechanism. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 940–948. Springer, Heidelberg (2000) (printing)Google Scholar
  16. 16.
    D’Amico, A.V., et al.: Real-time magnetic resonance image-guided interstitial brachytherapy in the treatment of select patients with clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 42(3), 507–515 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Kiyoyuki Chinzei
    • 1
  • Nobuhiko Hata
    • 2
  • Ferenc A. Jolesz
    • 2
  • Ron Kikinis
    • 2
  1. 1.Mechanical Engineering LaboratoryAIST, MITITsukubaJapan
  2. 2.Department of RadiologyBrigham and Women’s HospitalBostonUSA

Personalised recommendations