Planning and Simulation of Robotically Assisted Minimal Invasive Surgery

  • Louaï Adhami
  • Ève Coste-Manière
  • Jean-Daniel Boissonnat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1935)


This paper proposes a framework for pre-operative planning and simulation of robotically assisted Minimal Invasive Surgery (MIS). The design of an integrated system is presented for cardiovascular interventions. The approach consists of a planning, validation and simulation phase. The goals of each phase being, respectively, to propose suitable incision sites for the robot, to validate those site and to enable realistic simulation of the intervention. With the patient’s pre-operative data, we formulate the needs of the surgeon and the characteristics of the robot as mathematical criteria in order to optimize the settings of the intervention. Then we automatically reproduce expected surgeons’ movements and guaranty their feasibility. Finally we simulate the intervention in real-time, paying particular attention to potential collisions between the robotic arms.


Surgical simulators robotics and robotic manipulators therapy planning 


  1. 1.
  2. 2.
    Auer, L., Radetzky, A., Wimmer, C., Kleinszig, G., Delingette, H., Davies, B.: Visualisation for planning and simulation of minimally invasive procedures. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1199–1209. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Cadière, G.B., Leroy, J.: Principes généraux de la chirurgie laparoscopique. Encycl. Med. Chir. (Techniques chirurgicales - Appareil digestif) 40, 9 (1999)Google Scholar
  4. 4.
    Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics 5(1), 62 (1999)CrossRefGoogle Scholar
  5. 5.
    Geiger, B.: Three dimentional modeling of human organs and its application to diagnosis and surgical planning. Technical Report 2105, INRIA-Sophia (1993)Google Scholar
  6. 6.
    Gulbins, H., Reichenspurner, H., Bechker, C., Boehm, D., Knez, A., Schmitz, C., Bruening, R., Harbrel, R., Reichart, B.: Preoperarive 3d-reconstruction of the ultrafast-CT images for the planning of the minimally invasive direct coronary artery bypass operation (MIDCAB). In: Second World Congress of Minimally Invasive Cardiac Surgery, Minneapolis, Minnesota (June 1998)Google Scholar
  7. 7.
    Kühnapfel, U., Çakmak, H., Maaß, H.: 3Dmodeling for endoscopic surgery. In: Proc. IEEE Symposium on Simulation, pp. 22–32. Delft University, Delft, (1999)Google Scholar
  8. 8.
    Lombardo, J.-C., Cani, M.-P., Neyret, F.: Real-time collision detection for virtual surgery. In: Computer Animation, Geneva (May 1999)Google Scholar
  9. 9.
    Loulmet, D., Carpentier, A., d’Attellis, N., Berrebi, A., Cardon, C., Ponzio, O., Aupécle, B., Relland, J.Y.M.: Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments. The journal of thoraic and cardiovascular surgery 118(1) (July 1999)Google Scholar
  10. 10.
    Tabaie, H., Reinbolt, J., Graper, P., Kelly, T., Connor, M.: Endoscopic coronary artery bypass graft (ECABG) procedure with robotic assistance. The Heart Surgery Forum 2(0552) (Septemebr 1999),

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Louaï Adhami
    • 1
  • Ève Coste-Manière
    • 1
  • Jean-Daniel Boissonnat
    • 1
  1. 1.INRIA Sophia-AntipolisSophia-AntipolisFrance

Personalised recommendations