Index Calculus Attack for Hyperelliptic Curves of Small Genus

  • Nicolas Thériault
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2894)

Abstract

We present a variation of the index calculus attack by Gaudry which can be used to solve the discrete logarithm problem in the Jacobian of hyperelliptic curves. The new algorithm has a running time which is better than the original index calculus attack and the Rho method (and other square-root algorithms) for curves of genus ≥ 3. We also describe another improvement for curves of genus ≥ 4 (slightly slower, but less dependent on memory space) initially mentioned by Harley and used in a number of papers, but never analyzed in details.

References

  1. 1.
    Adleman, L.M., DeMarrais, J., Huang, M.-D.: A subexponential algorithm for discrete logarithms over hyperelliptic curves of large genus over GF(q). Theoret. Comput. Sci. 226(1-2), 7–18 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cantor, D.G.: Computing in the Jacobian of an hyperelliptic curve. Math. Comp. 48(177), 95–101 (1987)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Enge, A.: Computing discrete logarithms in high-genus hyperelliptic jacobians in provably subexponential time. Math. Comp. 71(238), 729–742 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Enge, A., Gaudry, P.: A general framework for subexponential discrete logarithm algorithms. Acta Arith. 102(1), 83–103 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Enge, A., Stein, A.: Smooth ideals in hyperelliptic function fields. Math. Comp. 71(239), 1219–1230 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garefalakis, T., Panario, D.: The index calculus method using non-smooth polynomials. Math. Comp. 70(235), 1253–1264 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gaudry, P.: Algorithmique des courbes hyperelliptiques et applications à la cryptologie, Thèse de doctorat de l’École polytechnique (2000)Google Scholar
  8. 8.
    Gaudry, P.: An algorithm for solving the discrete log problem on hyperelliptic curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Girault, M., Cohen, R., Campana, M.: A generalized birthday attack. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 129–156. Springer, Heidelberg (1988)Google Scholar
  10. 10.
    Koblitz, N.: Hyperelliptic cryptosystems. J. of Cryptology 1, 139–150 (1989)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite fields. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 109–133. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    Müller, V., Stein, A., Thiel, C.: Computing discrete logarithms in real quadratic congruence function fields of large genus. Math. Comp. 68(226), 807–822 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans. Inform. Theory IT-32(1), 54–62 (1986)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Nicolas Thériault
    • 1
  1. 1.University of Toronto 

Personalised recommendations