Advertisement

Factoring Estimates for a 1024-Bit RSA Modulus

  • Arjen Lenstra
  • Eran Tromer
  • Adi Shamir
  • Wil Kortsmit
  • Bruce Dodson
  • James Hughes
  • Paul Leyland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2894)

Abstract

We estimate the yield of the number field sieve factoring algorithm when applied to the 1024-bit composite integer RSA-1024 and the parameters as proposed in the draft version [17] of the TWIRL hardware factoring device [18]. We present the details behind the resulting improved parameter choices from [18].

Keywords

1024-bit RSA factorization number field sieve TWIRL 

References

  1. 1.
    Bach, E., Peralta, R.: Asymptotic semi-smoothness probabilities, University of Wisconsin, Technical report #1115 (October 1992)Google Scholar
  2. 2.
    Bernstein, D.J.: Circuits for integer factorization: a proposal (November 2001) (manuscript), available at http://cr.yp.to/papers.html#nfscircuit
  3. 3.
    Canfield, E.R., Erdös, P., Pomerance, C.: On a problem of Oppenheim concerning. Factorisatio Numerorum, J. Number Theory 17, 1–28 (1983)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgomery, P.L., Murphy, B., te Riele, H.J.J., et al.: Factorization of a 512-bit RSA modulus. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 1–17. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Coppersmith, D.: Modifications to the number field sieve. Journal of Cryptology  6, 169–180 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Crandall, R., Pomerance, C.: Prime numbers. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    De Bruijn, N.G.: On the number of positive integers ≤ x and free of prime factors > y, II. Indag. Math. 38, 239–247 (1966)Google Scholar
  8. 8.
    International Technology Roadmap for Semiconductors 2002 Update (2002), http://public.itrs.net/
  9. 9.
    Lambert, R.: Computational aspects of discrete logarithms, Ph.D. thesis, University of Waterloo (1996)Google Scholar
  10. 10.
    Lenstra, A.K., Lenstra Jr., H.W. (eds.): The development of the number field sieve. Lecture Notes in Math., vol. 1554. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  11. 11.
    Lenstra, A.K., Shamir, A.: Analysis and optimization of the TWINKLE factoring device. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 35–52. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Lenstra, A.K., Shamir, A., Tomlinson, J., Tromer, E.: Analysis of Bernstein’s factorization circuit. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 1–26. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Montgomery, P.L., Murphy, B.: Improved polynomial selection for the number field sieve, extended abstract for the conference on the mathematics of public-key cryptography, The Fields institute, Toronto, Ontario, Canada, June 13-17 (1999)Google Scholar
  14. 14.
    Murphy, B.: Modelling the yield of the number field sieve polynomials. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 137–150. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Murphy, B.: Polynomial selection for the number field sieve integer factorisation algorithm, PhD thesis, The Australian National University (July 1999)Google Scholar
  16. 16.
  17. 17.
    Shamir, A., Tromer, E.: Factoring large numbers with the TWIRL device (preliminary draft) (February 4, 2003), available at www.wisdom.weizmann.ac.il/~tromer/papers/twirl-20030208.ps.gz
  18. 18.
    Shamir, A., Tromer, E.: Factoring Large Numbers with the TWIRL Device. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 1–26. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Shamir, A.: Factoring large numbers with the TWINKLE device. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, p. 2. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Silverman, R.D.: Optimal parameterization of SNFS, Manuscript (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Arjen Lenstra
    • 1
  • Eran Tromer
    • 2
  • Adi Shamir
    • 2
  • Wil Kortsmit
    • 3
  • Bruce Dodson
    • 4
  • James Hughes
    • 5
  • Paul Leyland
    • 6
  1. 1.Citibank, N.A. and Technische Universiteit EindhovenMendhamUSA
  2. 2.Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Technische Universiteit EindhovenEindhovenThe Netherlands
  4. 4.Lehigh UniversityBethlehemUSA
  5. 5.Storage Technology CorporationMinneapolisUSA
  6. 6.Microsoft Research LtdCambridgeUK

Personalised recommendations