Certificateless Public Key Cryptography

  • Sattam S. Al-Riyami
  • Kenneth G. Paterson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2894)


This paper introduces and makes concrete the concept of certificateless public key cryptography (CL-PKC), a model for the use of public key cryptography which avoids the inherent escrow of identity-based cryptography and yet which does not require certificates to guarantee the authenticity of public keys. The lack of certificates and the presence of an adversary who has access to a master key necessitates the careful development of a new security model. We focus on certificateless public key encryption (CL-PKE), showing that a concrete pairing-based CL-PKE scheme is secure provided that an underlying problem closely related to the Bilinear Diffie-Hellman Problem is hard.


Signature Scheme Random Oracle Challenge Ciphertext Decryption Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adams, C., Lloyd, S.: Understanding Public-Key Infrastructure – Concepts, Standards, and Deployment Considerations. Macmillan, Indianapolis (1999)Google Scholar
  2. 2.
    Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. Cryptology ePrint Archive, Report 2003/126 (2003),
  3. 3.
    Barreto, P.S.L.M., et al.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., et al.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 26. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. Computing 32(3), 586–615 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boneh, D., Shacham, H., Lynn, B.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Chen, L., et al.: Certification of public keys within an identity based system. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 322–333. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Dankers, J., et al.: Public key infrastructure in mobile systems. IEE Electronics and Commucation Engineering Journal 14(5), 180–190 (2002)CrossRefGoogle Scholar
  10. 10.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM Journal of Computing 30(2), 391–437 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)Google Scholar
  12. 12.
    Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Gentry, C.: Certificate-based encryption and the certificate revocation problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)Google Scholar
  16. 16.
    Gutmann, P.: PKI: It’s not dead, just resting. IEEE Computer 35(8), 41–49 (2002)Google Scholar
  17. 17.
    Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Paterson, K.G.: Cryptography from pairings: a snapshot of current research. Information Security Technical Report 7(3), 41–54 (2002)CrossRefGoogle Scholar
  19. 19.
    Petersen, H., Horster, P.: Self-certified keys – concepts and applications. In: 3rd Int. Conference on Communications and Multimedia Security. Chapman and Hall, Boca Raton (1997)Google Scholar
  20. 20.
    Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  21. 21.
    Saeednia, S.: Identity-based and self-certified key-exchange protocols. In: Varadharajan, V., Pieprzyk, J., Mu, Y. (eds.) ACISP 1997. LNCS, vol. 1270, pp. 303–313. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  23. 23.
    Smart, N.P.: An identity based authenticated key agreement protocol based on the Weil pairing. Electronics Letters 38(13), 630–632 (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Smart, N.P.: Access control using pairing based cryptography. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 111–121. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sattam S. Al-Riyami
    • 1
  • Kenneth G. Paterson
    • 1
  1. 1.Information Security GroupRoyal Holloway, University of LondonEgham, Surrey

Personalised recommendations