Advertisement

PDS-PN: A New Proof-Number Search Algorithm

Application to Lines of Action
  • Mark H. M. Winands
  • Jos W. H. M. Uiterwijk
  • Jaap van den Herik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2883)

Abstract

The paper introduces a new proof-number (PN) search algorithm, called PDS-PN. It is a two-level search, which performs at the first level a depth-first Proof-number and Disproof-number Search (PDS), and at the second level a best-first PN search. First, we thoroughly investigate four established algorithms in the domain of Lines of Action endgame positions: PN, PN2, PDS and αβ search. It turns out that PN2 and PDS are best in solving hard problems when measured by the number of solutions and the solution time. However, each of those two has a practical disadvantage: PN2 is restricted by the working memory, and PDS is relatively slow in searching. Then we formulate our new algorithm by selectively using the power of each one: the two-level nature and the depth-first traversal, respectively. Experiments reveal that PDS-PN is competitive with PDS in terms of speed and with PN2 since it is not restricted in working memory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campbell, M., Hoane, J., Hsu, F.: Deep Blue. Artificial Intelligence 134, 57–83 (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Nalimov, E., Haworth, G., Heinz, E.: Space-efficient indexing of chess endgame tables. International Computer Games Association Journal 23, 148–162 (2000)Google Scholar
  3. 3.
    Allis, V., van der Meulen, M., van den Herik, J.: Proof-number search. Artificial Intelligence 66, 91–123 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Breuker, D., Allis, V., van den Herik, J.: How to mate: Applying proof-number search. In: van den Herik, J., Herschberg, I., Uiterwijk, J. (eds.) Advances in Computer Chess 7, University of Limburg, pp. 251–272 (1994)Google Scholar
  5. 5.
    Seo, M., Iida, H., Uiterwijk, J.: The PN*-search algorithm: Application to Tsumeshogi. Artificial Intelligence 129, 253–277 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Sackson, S.: A Gamut of Games. Random House (1969)Google Scholar
  7. 7.
    Winands, M.: Analysis and implementation of Lines of Action. Master’s thesis, Department of Computer Science, Universiteit Maastricht (2000)Google Scholar
  8. 8.
    Winands, M., Uiterwijk, J., van den Herik, J.: The quad heuristic in Lines of Action. International Computer Games Association Journal 24, 3–15 (2001)Google Scholar
  9. 9.
    Allis, V.: Searching for Solutions in Games and Artificial Intelligence. PhD thesis, Department of Computer Science, University of Limburg (1994)Google Scholar
  10. 10.
    Winands, M., Uiterwijk, J.: PN, PN2 and PN* in Lines of Action. Technical report, Department of Computer Science, Universiteit Maastricht (2001) Google Scholar
  11. 11.
    Breuker, D.: Memory versus Search in Games. PhD thesis, Department of Computer Science, Universiteit Maastricht (1998)Google Scholar
  12. 12.
    Breuker, D., Uiterwijk, J., van den Herik, J.: The PN2-search algorithm. In: van den Herik, J., Monien, B. (eds.) Advances in Computer Games 9, Universiteit Maastricht, pp. 115–132 (2001)Google Scholar
  13. 13.
    Berkey, D.: Calculus. Saunders College Publishing (1988)Google Scholar
  14. 14.
    Nagai, A.: A new AND/OR tree search algorithm using proof number and disproof number. In: Proceedings of Complex Games Lab Workshop, ETL, Tsukuba, Japan, pp. 40–45 (1998)Google Scholar
  15. 15.
    Nagai, A.: A new depth-first-search algorithm for AND/OR trees. Master’s thesis, The University of Tokyo (1999)Google Scholar
  16. 16.
    Breuker, D., Uiterwijk, J., van den Herik, J.: Replacement schemes and two-level tables. International Computer Chess Association Journal 19, 175–180 (1996)Google Scholar
  17. 17.
    Breuker, D., van den Herik, J., Uiterwijk, J., Allis, V.: A solution to the GHI problem for best-first search. Theoretical Computer Science 252, 121–149 (2001)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kocsis, L., Uiterwijk, J., van den Herik, J.: Move ordering using neural networks. In: Monostori, L., Váncza, J., Ali, M. (eds.) IEA/AIE 2001. LNCS (LNAI), vol. 2070, pp. 45–50. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Akl, S., Newborn, M.: The principal continuation and the killer heuristic. In: 1977 ACM Annual Conference Proceedings, pp. 466–473. ACM, New York (1977)CrossRefGoogle Scholar
  20. 20.
    Sakuta, M., Iida, H.: The performance of PN*, PDS and PN search on 6×6 Othello and Tsume-shogi. In: van den Herik, J., Monien, B. (eds.) Advances in Computer Games 9, Universiteit Maastricht, pp. 203–222 (2001)Google Scholar
  21. 21.
    Nagai, A.: DF-PN Algorithm for Searching AND/OR Trees and Its Applications. PhD thesis, The University of Tokyo (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Mark H. M. Winands
    • 1
  • Jos W. H. M. Uiterwijk
    • 1
  • Jaap van den Herik
    • 1
  1. 1.Department of Computer ScienceUniversiteit MaastrichtThe Netherlands

Personalised recommendations