Completeness Results for Fibred Parchments

  • C. Caleiro
  • P. Gouveia
  • J. Ramos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2755)


In [6] it was shown that fibring could be used to combine institutions presented as c-parchments, and several completeness preservation results were established. However, their scope of applicability was limited to propositional-based logics. Herein, we extend these results to a broader class of logics, possibly including variables, terms and quantifiers. On the way, we need to consider an enriched notion of proof-calculus that deals explicitly with the substitution provisos that often appear in schematic inference rules. For illustration of the concepts, constructions and results, we shall adopt modal first-order logic as a working example.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andréka, H., Németi, I., Sain, I.: Algebraic logic. In: Handbook of Philosophical Logic, 2nd edn., vol. 2. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  2. 2.
    Birkhoff, G.: Lattice Theory. AMS Colloquium Publications (1967)Google Scholar
  3. 3.
    Blackburn, P., Rijke, M.: Why combine logics? Studia Logica 59(1), 5–27 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Blok, W., Pigozzi, D.: Algebraizable Logics, vol. 77. Memoires AMS (1989)Google Scholar
  5. 5.
    Caleiro, C.: Combining Logics. PhD thesis, Universidade Técnica de Lisboa (2000)Google Scholar
  6. 6.
    Caleiro, C., Mateus, P., Ramos, J., Sernadas, A.: Combining logics: Parchments revisited. In: Cerioli, M., Reggio, G. (eds.) WADT 2001 and CoFI WG Meeting 2001. LNCS, vol. 2267, pp. 48–70. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Coniglio, M.E., Sernadas, A., Sernadas, C.: Fibring logics with topos semantics. Journal of Logic and Computation (in print)Google Scholar
  8. 8.
    Diaconescu, R.: Grothendieck institutions. App. Cat. Str. 10(4), 383–402 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gabbay, D.: Fibred semantics and the weaving of logics: part 1. Journal of Symbolic Logic 61(4), 1057–1120 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Goguen, J., Burstall, R.: A study in the foundations of programming methodology: specifications, institutions, charters and parchments. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 313–333. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  11. 11.
    Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hughes, G., Cresswell, M.: A New Introduction to Modal Logic. Routledge, New York (1996)CrossRefMATHGoogle Scholar
  13. 13.
    Kracht, M., Kutz, O.: The semantics of modal predicate logic I: Counter-part frames. In: Advances in Modal Logic. CSLI, vol. 3 (2002)Google Scholar
  14. 14.
    Mendelson, E.: Introduction to Mathematical Logic. van Nostrand, D. (1979)Google Scholar
  15. 15.
    Meseguer, J.: General logics. In: Proceedings of the Logic Colloquium 1987, pp. 275–329. North-Holland, Amsterdam (1989)Google Scholar
  16. 16.
    Mossakowski, T.: Using limits of parchments to systematically construct institutions of partial algebras. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 379–393. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    Mossakowski, T., Tarlecki, A., Pawłowski, W.: Combining and representing logical systems. In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 177–196. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Mossakowski, T., Tarlecki, A., Pawłowski, W.: Combining and representing logical systems using model-theoretic parchments. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 349–364. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Pawłowski, W.: Presenting and combining inference systems. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 409–424. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Sernadas, A., Sernadas, C., Caleiro, C.: Fibring of logics as a categorial construction. Journal of Logic and Computation 9(2), 149–179 (1999)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sernadas, A., Sernadas, C., Caleiro, C., Mossakowski, T.: Categorial fibring of logics with terms and binding operators. In: Frontiers of Combining Systems 2, pp. 295–316. Research Studies Press (2000)Google Scholar
  22. 22.
    Sernadas, A., Sernadas, C., Zanardo, A.: Fibring modal first-order logics: Completeness preservation. Logic Journal of the IGPL 10(4), 413–451 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sernadas, C., Rasga, J., Carnielli, W.A.: Modulated fibring and the collapsing problem. Journal of Symbolic Logic 67(4), 1541–1569 (2002)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  25. 25.
    Zanardo, A., Sernadas, A., Sernadas, C.: Fibring: Completeness preservation. Journal of Symbolic Logic 66(1), 414–439 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • C. Caleiro
    • 1
  • P. Gouveia
    • 1
  • J. Ramos
    • 1
  1. 1.CLC – Departamento de MatemáticaIST – UTLLisboaPortugal

Personalised recommendations