Advertisement

KOM ScenGen The Swiss Army Knife for Simulation and Emulation Experiments

  • Oliver Heckmann
  • Krishna Pandit
  • Jens Schmitt
  • Ralf Steinmetz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2899)

Abstract

Multimedia networking involves complex collections of protocols, in particular protocols that support the inherent quality of service (QoS) requirements of multimedia applications. Most often analytical treatment falls short in being able to assess the overall system behaviour or performance. However, also simulation and testbed experiments alone often leave uneasiness with the results they deliver. The combination of simulation and testbed experiments promises to avoid most disadvantages that their isolated usage bears. In this paper, we discuss the KOM Scenario Generator, a tool that supports the integration of simulation and testbed experiments for system-wide assessment of design alternatives in particular in the complex environment of distributed multimedia systems. This paper also systematically analyses the different steps in creating a research scenario. Even if one is not interested in combining simulations and testbed experiments our scenario generator is a helpful tool because it systematically integrates and supports all the different steps in creating a complex network research scenario from topology creation over traffic generation to evaluation.

Keywords

Scenario Generator Traffic Model Traffic Generator Link Property Testbed Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braden, R., Clark, D., Shenker, S.: Integrated Services in the Internet Architecture: an Overview. Informational RFC 1633 (June 1994)Google Scholar
  2. 2.
    Black, D., Blake, S., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture for Differentiated Services. Informational RFC 2475 (December 1998)Google Scholar
  3. 3.
    Hurley, P., Kara, M., Le Boudec, J.Y., Thiran, P.: ABE: Providing a Low-Delay Service within Best Effort. IEEE Network Magazine 15(3) (May 2001)Google Scholar
  4. 4.
    Kelly, F.: Models for a self-managed Internet. Philosophical Transactions of the Royal Society A358, 2335–2348 (2000)Google Scholar
  5. 5.
    Karsten, M., Schmitt, J.: Admission Control based on Packet Marking and Feedback Signalling. Mechanisms, Implementation and Experiments. Technical Report TR-KOM- 2002-03, Darmstadt University of Technology (May 2002)Google Scholar
  6. 6.
    Karsten, M., Schmitt, J., Steinmetz, R.: Implementation and Evaluation of the KOM RSVP Engine. In: Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’2001), April 2001, pp. 1290–1299. IEEE, Los Alamitos (2001)Google Scholar
  7. 7.
    Floyd, S., Paxson, V.: Difficulties in Simulating the Internet. Transactions on Networking, 392–403 ( February 2001)Google Scholar
  8. 8.
    Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A., Huang, P., McCanne, S., Varadhan, K., Xu, Y., Yu, H.: Advances in Network Simulation. IEEE Computer 33(5), 59–67 (2000)Google Scholar
  9. 9.
    Hafid, A., Meer, J.D., Rennoch, A., Bochmann, G.V., Dssouli, R.: Quality of Service Verification Experiments. In: Proceedings of the Workshop on Distributed Multimedia Applications (1994)Google Scholar
  10. 10.
    Neufeld, M., Jain, A., Grunwald, D.: NSClick: Bridging Network Simulation and Deployment. In: Proceedings of the 5th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, pp. 74–81. ACM Press, New York (2002)CrossRefGoogle Scholar
  11. 11.
    Network Simulator NS2, http://www.isi.edu/nsnam/ns/
  12. 12.
    JavaSim Network Simulator, http://www.javasim.org/
  13. 13.
    OpNet Network Simulator, http://www.opnet.com/
  14. 14.
  15. 15.
    NS2 Scenario Generator Modifications for QoS Experiments, http://keskus.hut.fi/tutkimus/ironet/ns2/ns2.html
  16. 16.
    MANET Scenario Generator, http://www.comp.nus.edu.sg/liqm/scengen/
  17. 17.
    BonnMotion: Java Mobility Scenario Generator and Analyser, http://www.cs.unibonn.de/IV/BonnMotion
  18. 18.
    Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular router. ACM Transactions on Computer Systems 18(3), 263–297 (2000)CrossRefGoogle Scholar
  19. 19.
    Herrscher, D., Leonhardi, A., Rothermel, K.: Modeling computer networks for emulation. In: International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2002), June 2002, pp. 1725–1731 (2002)Google Scholar
  20. 20.
    TIERS. Tiers Topology Generator, http://www.isi.edu/nsnam/ns/ns-topogen.html#tiers
  21. 21.
    BRITE. Boston University Representative Internet Topology Generator, http://www.cs.bu.edu/brite/
  22. 22.
    GT-ITM. Georgia Tech Internetwork Topology Models, http://www.cc.gatech.edu/projects/gtitm/
  23. 23.
    Inet Topology Generator, http://topology.eecs.umich.edu/inet/
  24. 24.
    Heckmann, O., Piringer, M., Schmitt, J., Steinmetz, R.: On realistic network topologies for simulation. In: Proceedings of ACM SIGCOMM MoMeTools, Karlsruhe (2003)Google Scholar
  25. 25.
    Heckmann, O., Pandit, K., Schmitt, J., Hoffmann, M., Jobmann, M.: LETSQoS Milestone 2 (June 2002), http://www.letsqos.de
  26. 26.
    Karagiannis, T., Faloutsos, M.: SELFIS: A Tool for Self-Similarity and Long-Range Dependence Analysis. In: Proceedings of the 1st Workshop on Fractals and Self- Similarity in Data Mining (2002)Google Scholar
  27. 27.
    Karagiannis, T.: SELFIS: A Short Tutorial (2002), http://www.cs.ucr.edu/tkarag/Selfis/Selfis.html
  28. 28.
    Roberts, J., Mocci, U., Virtamo, J.T. (eds.): Broadband Network Teletraffic (Final Report of COST 242). LNCS, vol. 1155. Springer, Heidelberg (1996)Google Scholar
  29. 29.
    UC Davis Generator of Self-Similar Traffic, http://wwwcsif.cs.ucdavis.edu/kramer/code/trf_gen2.html
  30. 30.
    NetIQ Chariot Traffic Generator, http://www.netiq.com/products/chr/default.asp
  31. 31.
    Ixiacom Ixia Traffic Generator, http://www.ixiacom.com/
  32. 32.
    Heegaard, P.: GenSyn - a generator of synthetic Internet traffic used in QoS experiments. In: Proceedings of 15th Nordic Teletraffic Seminar (2000)Google Scholar
  33. 33.
    Barford, P., Crovella, M.: Generating Representative Web Workloads for Network and Server Performance Evaluation. In: Measurement and Modeling of Computer Systems, pp. 151–160 (1998)Google Scholar
  34. 34.
  35. 35.
    Netperf Network Benchmark Tool, http://www.netperf.org/netperf/NetperfPage.htm
  36. 36.
    A Tool for Network Experimentation and Measurement (Netspec), http://www.ittc.ukans.edu/netspec/
  37. 37.
    NSWEB HTTP Traffic Generator, http://www.net.uni-sb.de/jw/nsweb/
  38. 38.
    Lan, K., Heidemann, J.: Rapid Model Parameterization from Traffic Measurements, http://www.isi.edu/kclan/paper/ramp.pdf
  39. 39.
    Danzig, P.B., Jamin, S.: tcp-lib: A library of TCP/IP Traffic Characteristics. USC Networking and Distributed Systems Laboratory TR CS-SYS-91-01 (October 1991)Google Scholar
  40. 40.
    Schuler, C.: fft_fgn: fractional gaussian noise generator, ftp://ita.ee.lbl.gov/software/fft_fgn_c-1.2.tar.Z
  41. 41.
    Norros, I., Mannersalo, P., Wang, J.: Simulation of fractional Brownian motion with conditionalized random midpoint displacement. Advances in Performance Analysis (1999)Google Scholar
  42. 42.
    Paxson, V., Floyd, S.: Wide area traffic: the failure of Poisson modeling. IEEE/ACM Transactions on Networking 3(3), 226–244 (1995)CrossRefGoogle Scholar
  43. 43.
    Abdulla, G.: Analysis and Modelling of World Wide Web Traffic. PhD thesis, Virginia Polytechnic Institute and State University (1998)Google Scholar
  44. 44.
    Ewing, D.J., Hall, R.S., Schwartz, M.F.: A Measurement Study of Internet File Transfer Traffic. Technical Report CU-CS 571-92 (January 1992)Google Scholar
  45. 45.
    Charzinski, J.: HTTP/TCP Connection and Flow Characteristics. Performance Evaluation 42(2-3), 149–162 (2000)zbMATHCrossRefGoogle Scholar
  46. 46.
    Feldmann, A.: Characteristics of TCP Connection Arrivals, 1998. Technical report, AT&T Labs Research (1998)Google Scholar
  47. 47.
    Maennel, O., Feldmann, A.: Realistic BGP Traffic for Test Labs. In: Proceedings of ACM SIGCOMM (2002)Google Scholar
  48. 48.
    Rose, O.: Statistical properties of MPEG video traffic and their impact on traffic modeling in ATM systems. Technical Report Technical Report No. 101, University of Wuerzburg, Institute of Computer Science, 2 (1995)Google Scholar
  49. 49.
    Internet Traffic Archive (ITA), http://ita.ee.lbl.gov/html/traces.html
  50. 50.
    NLANR/NZIX Traces, http://pma.nlanr.net/Traces/
  51. 51.
    Waikato Internet Traffic Storage Traces, http://wand.cs.waikato.ac.nz/wand/wits/
  52. 52.
    Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP Throughput: A Simple Model and its Empirical Validation. In: Proceedings of the ACM SIGCOMM (1998)Google Scholar
  53. 53.
    Cho, K.: The Design and Imlementation of the AltQ Traffic Management System. PhD thesis, Keio University (January 2001)Google Scholar
  54. 54.
  55. 55.
  56. 56.
    Fall, K.: Network Emulation in the Vint/NS Simulator. In: Proceedings of the 4th IEEE Symposium on Computers and Communications (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Oliver Heckmann
    • 1
  • Krishna Pandit
    • 1
  • Jens Schmitt
    • 1
  • Ralf Steinmetz
    • 1
  1. 1.KOM Multimedia Communications Lab, Department for Electrical Engineering and Information Technology, & Department for Computer ScienceDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations