Iterative Synthesis of Control Guards Ensuring Invariance and Inevitability in Discrete-Decision Games

  • Michel Sintzoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2635)


Reactive and hybrid systems are modeled by games where players make strategic decisions in a temporally discrete manner. The dynamics of players use dense or discrete time. In order to guarantee invariance and inevitability properties, the proponent moves are restricted by “winning guards”. The winning strategy determined by these guards does not exclude any initial state from which a winning strategy exists. Sets of such initial states constitute winning regions and are defined by fixed points. The iterates which yield winning regions are structured as unions of iterates which yield winning guards.


Hybrid System Complete Lattice Decision Mode Sequential Composition Winning Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Abr96]
    Abrial, J.-R.: The B-Book. Camdridge Univ. Press, Cambridge (1996)MATHCrossRefGoogle Scholar
  2. [AgS02]
    Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint, Trieste. Lecture Notes, Intern. School Advanced Studies (2002)Google Scholar
  3. [AMP95]
    Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and timed systems. In: Proc. 2nd Workshop Hybrid Systems. LNCS, vol. 999, pp. 1–20. Springer, Berlin (1995)Google Scholar
  4. [Asa00]
    Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of switching controllers for linear systems. Proc. IEEE 88(7), 1011–1025 (2000)CrossRefGoogle Scholar
  5. [Aub91]
    Aubin, J.-P.: Viability Theory, Birkhaüser, Boston (1991)Google Scholar
  6. [BaC97]
    Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhaüser, Boston (1997)Google Scholar
  7. [BaO98]
    Bas̨ar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, Soc. Industr. and Appl. Math., Philadelphia (1998)Google Scholar
  8. [BaW98]
    Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer, Berlin (1998)MATHGoogle Scholar
  9. [BCT02]
    Bayen, A.M., Crück, E., Tomlin, C.J.: Guaranteed overapproximations of unsafe sets for continuous and hybrid systems: solving the Hamilton-Jacobi equation using viability techniques. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 90–104. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. [Ber00]
    Berstekas, D.P.: Dynamic Programming and Optimal Control. 2nd ed., Vol. I, 2000, and Vol. II, 2001. Athena Scientific, BelmontGoogle Scholar
  11. [BKS98]
    Barbeau, M., Kabanza, F., St-Denis, R.: A method for the synthesis of controllers to handle safety, liveness, and real-time constraints. IEEE Trans. Automatic Control 43(11), 1543–1559 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. [Bro03]
    Broy, M.: Abstractions from time. In: McIver, A., Morgan, C. (eds.) Programming Methodology, pp. 95–107. Springer, Berlin (2003)Google Scholar
  13. [BüL69]
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions for finite-state operators. Trans. AMS 138, 259–311 (1969)CrossRefGoogle Scholar
  14. [CGP99]
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  15. [Cha00]
    Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. [CoC00]
    Cousot, P., Cousot, R.: Temporal abstract interpretation. In: Proc. 25th Symp. Principles Programming Lang., pp. 12–25. ACM, New-York (2000)Google Scholar
  17. [Cou78]
    Cousot, P.: Méthodes Itératives de Construction et d’Approximation de Points Fixes d’Opérateurs Monotones sur un Treillis, Analyse Sémantique des Programmes, Thèse de Doctorat Sci. Math., Univ. Sci. et Médicale de Grenoble (1978)Google Scholar
  18. [Dij76]
    Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs (1976)MATHGoogle Scholar
  19. [DN00]
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proc. IEEE 88(7), 985–1010 (2000)CrossRefGoogle Scholar
  20. [GTW02]
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)MATHGoogle Scholar
  21. [Har80]
    Harel, D.: And/or programs: a new approach to structured programming. ACM TOPLAS 2(1), 1–17 (1980)MATHCrossRefMathSciNetGoogle Scholar
  22. [Hen00]
    Henzinger, T.A., Majumdar, R., Mang, F., Raskin, J.-F.: Abstract interpretation of game properties. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 220–239. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. [HLM01]
    Heymann, M., Lin, F., Meyer, G.: Control of rate-bounded hybrid systems with liveness constraints. In: Colonius, F., et al. (eds.) Advances in Mathematical Systems Theory, pp. 151–168. Birkhaüser, Boston (2001)Google Scholar
  24. [Hoa85]
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  25. [Isa65]
    Isaacs, R.: Differential Games. Wiley, New-York (1965); Republished: Dover, New-York (1999)MATHGoogle Scholar
  26. [Lam94]
    Lamport, L.: The temporal logic of actions. ACM Trans. Programming Languages and Systems 16(3), 872–923 (1994)CrossRefGoogle Scholar
  27. [Lew94]
    Lewin, J.: Differential Games. Springer, London (1994)Google Scholar
  28. [Lyg03]
    Lygeros, J., Johansson, K.H., Simić, S.N., Zhang, J., Sastry, S.S.: Dynamical properties of hybrid automata. IEEE Trans. Automatic Control 48(1), 2–18 (2003)CrossRefGoogle Scholar
  29. [Mos98]
    Moszkowski, B.: Compositional reasoning using interval temporal logic and Tempura. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 439–464. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  30. [MPS95]
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)Google Scholar
  31. [Ros98]
    Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, London (1998)Google Scholar
  32. [RW89]
    Ramadge, P.J., Wonham, W.M.: The control of discrete-event systems. Proc. IEEE 77, 81–98 (1989)CrossRefGoogle Scholar
  33. [Si96]
    Sintzoff, M.: Abstract verification of structured dynamical systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 126–137. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  34. [TB70]
    Trakhtenbrot, B.A., Barzdin, Ya.M.: Konechnye Avtomaty (Povedenie i Sintez), Nauka, Moscow (1970); Engl. transl. by D. Louvish, ed. by E. Shamir and L.H. Landweber: Finite Automata: Behaviour and Synthesis, North-Holland, Amsterdam (1973)Google Scholar
  35. [Tho95]
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)Google Scholar
  36. [TLS00]
    Tomlin, C.J., Lygeros, J., Sastry, S.S.: A game-theoretic approach to controller design for hybrid systems. Proc. IEEE 88(7), 949–970 (2000)CrossRefGoogle Scholar
  37. [vLS79]
    van Lamsweerde, A., Sintzoff, M.: Formal derivation of strongly correct concurrent programs. Acta Informatica 12, 1–31 (1979)MATHCrossRefMathSciNetGoogle Scholar
  38. [Vin00]
    Vinter, R.: Optimal Control, Birkhaüser, Boston (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michel Sintzoff
    • 1
  1. 1.Department of Computing Science and EngineeringUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations