Digital Flatness

  • Valentin E. Brimkov
  • Reneta P. Barneva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)

Abstract

In this paper we define and study the notion of digital flatness. We extend to dimension two various definitions and classical results about digital lines and rays. In particular, we resolve a conjecture of Maurice Nivat restricted to the case of digital planes, and define and characterize 2D Sturmian rays.

Keywords

Digital planarity 2D Sturmian word periodic array digitization of planes slope of digital planes 

References

  1. 1.
    Amir, A., Benson, G.: Two-dimensional periodicity and its applications. In: Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pp. 440–452 (1992)Google Scholar
  2. 2.
    Brimkov, V.E.: Digital flatness and related combinatorial problems, CITR-TR-120, University of Auckland, New Zealand, p. 44 (2002), http://www.citr.auckland.ac.nz/techreports/?year=2002
  3. 3.
    Brimkov, V.E.: Notes on digital flatness, TR 2002-01, Laboratory on Signal, Image and Communication, CNRS, University of Poitiers, France, p. 52 (July 2002)Google Scholar
  4. 4.
    Brons, R.: Linguistic methods for description of a straight line on a grid. Computer Graphics Image Processing 2, 48–62 (1974)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bruckstein, A.M.: Self-similarity properties of digitized straight lines. Contemp. Math. 119, 1–20 (1991)MathSciNetGoogle Scholar
  6. 6.
    Coven, E., Hedlund, G.: Sequences with minimal block growth. Math. Systems Theory 7, 138–153 (1973)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Epifanio, C., Koskas, M., Mignosi, F.: On a conjecture on bidimensional words, http://dipinfo.math.unipa.it/mignosi/periodicity.html
  8. 8.
    Galil, Z., Park, K.: Truly alphabet-independent two-dimensional pattern matching. In: Proc. 33rd IEEE Symp. Found, pp. 247–256 (1992)Google Scholar
  9. 9.
    Grünbaum, B., Shephard, G.C.: Tilings and patterns. Freeman & Co, New York (1987)MATHGoogle Scholar
  10. 10.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vision Graphics Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  11. 11.
    Lunnon, W.F., Pleasants, P.A.B.: Characterization of two-distance sequences. J. Austral. Math. Soc (Ser. A) 53, 198–218 (1992)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mignosi, F., Perillo, G.: Repetitions in the Fibonacci infinite words. RAIRO Theor. Inform. Appl. 26, 199–204 (1992)MATHGoogle Scholar
  13. 13.
    Morse, M., Hedlund, G.A.: Symbolic dynamics II: Sturmian sequences. Amer. J. Math. 61, 1–42 (1940)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Nivat, M.: Invited talk at ICALP 1997. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Rosenfeld, A., Klette, R.: Digital straightness. Electronic Notes in Theoretical Computer Science 46 (2001), http://www.elsevier.nl/locate/entcs/volume46.html
  16. 16.
    Rosenfeld, A.: Digital straight line segments. IEEE Trans. Computers 23, 1264–1269 (1974)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Smeulders, A.W.M., Dorst, L.: Decomposition of discrete curves into piecewise segments in linear time. Contemporary Mathematics 119, 169–195 (1991)MathSciNetGoogle Scholar
  18. 18.
    Wu, A.Y.: On the chain code of a line. IEEE Trans. Pattern Analysis Machine Intelligence 4, 347–353 (1982)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Valentin E. Brimkov
    • 1
  • Reneta P. Barneva
    • 2
  1. 1.Inst. of Math. and Comp. ScienceBulg. Acad. of Sci.SofiaBulgaria
  2. 2.SUNY FredoniaFredoniaUSA

Personalised recommendations