Interactively Visualizing 18-Connected Object Boundaries in Huge Data Volumes

  • Robert E. Loke
  • Hans du Buf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)


We present a multiresolution framework for the visualization of structures in very large volumes. Emphasis is given to an in the framework embedded, new algorithm for triangulating 18-connected object boundaries which preserves 6-connectivity details. Such boundaries cannot be triangulated by standard 6-connectivity algorithms such as Marching Cubes. Real sonar imaging results show that the framework allows to visualize global subbottom structure, but also high-resolution objects, with a reduced CPU time and an improved user interactivity.


Boundary triangulation Marching cube Voxel connectivity Visualization 


  1. 1.
    Elvins, T.T.: A survey of algorithms for volume visualization. Computer Graphics 26(3), 194–201 (1992)CrossRefGoogle Scholar
  2. 2.
    Kaufman, A.: Volume Visualization. IEEE Computer Society Press Tutorial, Los Alamitos (1991)Google Scholar
  3. 3.
    Loke, R.E., du Buf, J.M.H.: Sonar object visualization in an octree. In: Proc. OCEANS 2000, MTS/IEEE Conf., Providence (RI), USA, pp. 2067–2073 (2000)Google Scholar
  4. 4.
    Wilhelms, J., Van Gelder, A.: Multi-dimensional trees for controlled volume rendering and compression. In: Press, A. (ed.) 1994 ACM Symposium on Volume Visualization, Tysons Corner (VA), USA, pp. 27–34 (1994)Google Scholar
  5. 5.
    Meagher, D.: Geometric modeling using octree encoding. Computer Graphics and Image Processing 19(2), 129–147 (1982)CrossRefGoogle Scholar
  6. 6.
    Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley, Reading (1990)Google Scholar
  7. 7.
    Loke, R.E., du Buf, J.M.H.: 3D data segmentation by means of adaptive boundary refinement in an octree. Pattern Recognition (2002) (subm.)Google Scholar
  8. 8.
    Loke, R.E., du Buf, J.M.H.: Quadtree-guided 3D interpolation of irregular sonar data sets. IEEE J. Oceanic Eng. (2003) (to appear)Google Scholar
  9. 9.
    Lachaud, J.O., Montanvert, A.: Continuous analogs of digital boundaries: A topological approach to iso-surfaces. Graphical Models and Image Processing 62, 129–164 (2000)Google Scholar
  10. 10.
    Couprie, M., Bertrand, G.: Simplicity surfaces: a new definition of surfaces in Z3. In: Proc. SPIE Vision Geometry VII, vol. 3454, pp. 40–51 (1998)Google Scholar
  11. 11.
    Loke, R.E., du Buf, J.M.H.: Linking matched cubes: efficient triangulation of 18-connected 3D object boundaries. The Visual Computer (2003) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Robert E. Loke
    • 1
  • Hans du Buf
    • 1
  1. 1.Vision LaboratoryUniversity of AlgarveFaroPortugal

Personalised recommendations