Morphological Image Reconstruction with Criterion from Labelled Markers

  • Damián Vargas-Vazquez
  • Jose Crespo
  • Victor Maojo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)

Abstract

In Mathematical Morphology, the reconstruction of images from markers has proven to be useful in morphological filtering and image segmentation. This work investigates the utilization of a criterion in the reconstruction process, whose utilization in the problem of the image reconstruction from an image marker has been partially treated elsewhere. This work further investigates this idea and extends it to the problem of image reconstruction from labelled markers. In the binary case, this allows us to compute the modified influence zones associated to the set of labelled markers. A significant difference with the usual case (i.e., the ”normal” influence zones) is that we generally do not obtain a whole partition of the space, because the criterion added to the reconstruction process causes that some points or pixels are not recovered. In addition, in this paper we consider the gray-level case, and we use the reconstruction with criterion to separate regions from a non-binary input image. This input image is considered as a topographic relief (similarly as in a normal watershed); however, the flooding mechanism is modified by the reconstruction criterion. The benefit is that we can control to some extent how the flooding proceeds and, therefore, how image region shapes are recovered.

Keywords

Mathematical Morphology segmentation flat zones labelled markers reconstruction with criterion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. In: Dougherty, E. (ed.) Book Mathematical morphology in image processing, pp. 433–481. Marcel Dekker, New York (1993)Google Scholar
  2. 2.
    Crespo, J., Serra, J., Schafer, R.: Theoretical aspects of morphological filters by reconstruction. Signal Process 47(2), 201–225 (1995)CrossRefGoogle Scholar
  3. 3.
    Crespo, J., Schafer, R.: Locality and adjacency stability constraints for morphological connected operators. Journal of Mathematical Imaging and Vision 7, 85–102 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Crespo, J., Maojo, V.: New Results on the Theory of Morphological Filters by Reconstruction. Journal Pattern Recognition 31(4), 419–429 (1998)CrossRefGoogle Scholar
  5. 5.
    Digabel, H., Lantuéjoul, C.: C. Iterative algorithms. In: Caen, J.-L., Chermant, E. (eds.) Second Symposium Européen d’Analyse Quantitative des Microstructures en Sciences des Matériaux, Biologie et Médecine, pp. 85–99. Riederer Verlag, Stuttgart (1977)Google Scholar
  6. 6.
    Heijmans, H.: Morphological Image Operators (Advances in Electronics and Electron Physics, Series Editor: P. Hawkes). Academic Press, London (1994)Google Scholar
  7. 7.
    Meyer, F., Beucher, S.: Morphological segmentation. J. Visual Commun. Image Repres 1(1), 21–45 (1990)CrossRefGoogle Scholar
  8. 8.
    Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. J. of IEEE Transactions on Image Processing 4, 1153–1160 (1995)CrossRefGoogle Scholar
  9. 9.
    Schmitt, M., Mattioli, J.: Morphologie Mathematique, Masson (1993)Google Scholar
  10. 10.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)MATHGoogle Scholar
  11. 11.
    Serra, J. (ed.): Image Analysis and Mathematical Morphology, vol. 2. Academic Press, London (1988)Google Scholar
  12. 12.
    Serra, J., Salembier, P.: Connected operators and pyramids. In: SPIE (ed.) FOSSACS 2001, vol. 2030, pp. 85–76 (1993)Google Scholar
  13. 13.
    Serra, J.: Connectivity on complete lattices. Journal of Mathematical Imaging and Vision 9, 231–251 (1998)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2003)MATHGoogle Scholar
  15. 15.
    Terol, R., Vargas, D.: A study of openings and closings with reconstruction criteria. In: Talbot, H., Beare, R. (eds.) Mathematical Morphology, Proc. of the VIth International Symposium (2002)Google Scholar
  16. 16.
    Vincent, L., Soille, P.: Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. J. IEEE Trans. Pattern Anal. Machine Intell 13, 583–598 (1991)CrossRefGoogle Scholar
  17. 17.
    Vargas, D., Crespo, J., Maojo, V., Terol, I.R.: Medical Image Segmentation Using Openings and Closings with Reconstruction Criteria. In: Proceedings of the International Conference on Image Processing ICIP (September 2003) (to be published)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Damián Vargas-Vazquez
    • 1
  • Jose Crespo
    • 1
  • Victor Maojo
    • 1
  1. 1.Facultad de InformáticaUniversidad Politécnica de MadridBoadilla del Monte (Madrid)Spain

Personalised recommendations