Efficient Computation of 3D Skeletons by Extreme Vertex Encoding

  • Jorge Rodríguez
  • Federico Thomas
  • Dolors Ayala
  • Lluís Ros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)


Many skeletonisation algorithms for discrete volumes have been proposed. Despite its simplicity, the one given here still has many theoretically favorable properties. Actually, it provides a connected surface skeleton that allows shapes to be reconstructed with bounded error. It is based on the application of directional erosions, while retaining those voxels that introduce disconnections. This strategy is proved to be specially well-suited for extreme vertex encoded volumes, leading to a fast thinning algorithm.


3D surface skeleton mathematical morphology extreme vertex encoding 


  1. 1.
    Rodríguez, J., Ayala, D., Aguilera, A.: A Complete Solid Model for Surface Rendering. In: Geometric Modeling for Scientific Visualization. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Aguilera, A., Ayala, D.: Orthogonal Polyhedra as Geometric Bounds in Constructive Solid Geometry. In: ACM SM 1997, pp. 56–67 (1997)Google Scholar
  3. 3.
    Aguilera, A., Ayala, D.: Domain extension for the extreme vertices model (EVM) and set-membership classification. In: CSG 1998. Ammerdown (UK), Information Geometers Ltd., pp. 33–47 (1998)Google Scholar
  4. 4.
    Aguilera, A., Ayala, D.: Converting orthogonal polyhedra from extreme vertices model to B-Rep and to alternative sum of volumes. Computing Suppl. (14), 1–28 (2001)Google Scholar
  5. 5.
    Borgefors, G.B., Nystrom, I., Sanniti Di Baja, G.: Computing skeletons in three dimensions. Pattern Recognition 32, 1225–1236 (1999)CrossRefGoogle Scholar
  6. 6.
    Brandt, J.W.: Describing a solid with the three-dimensional skeleton. In: SPIE Curves and Surfaces in Computer Vision and Graphics III, vol. 1830, pp. 258–269 (1992)Google Scholar
  7. 7.
    Cardoner, R., Thomas, F.: Residuals + directional gaps = skeletons. Pattern Recognition Letters 18, 343–353 (1997)CrossRefGoogle Scholar
  8. 8.
    Jonker, P.P.: Morphological operations on 3D and 4D images: from shape primitive detection to skeletonization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 371–391. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Latecki, L.: 3-D well-composed pictures. Graphical Models and Image Processing 59(3), 164–172 (1997)CrossRefGoogle Scholar
  10. 10.
    Lohou, C., Bertrand, G.: A new 3D 6-subiteration thinning algorithm based on p-simple points. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 102–113. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Malandain, G., Fernández-Vidal, S.: Euclidean skeletons. Image and Vision Computing 16, 317–327 (1998)CrossRefGoogle Scholar
  12. 12.
    Manzanera, A., Bernard, T.M., Prêteux, F., Longuet, B.: Medial faces from a concise 3D thinning algorithm. In: Proc. 7th IEEE Int. Conf. on Computer Vision, pp. 337–343 (1999)Google Scholar
  13. 13.
    Manzanera, A., Bernard, T.M., Prêteux, F., Longuet, B.: Ultra-fast skeleton based on an isotropic fully parallel algorithm. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 313–324. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Remy, E., Thiel, E.: Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D and 3D. Pattern Recognition Letters 23(6), 649–661 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Sudhalkar, A., Gürxöz, L., Prinz, F.: Box-skeletons of discrete solids. Computer-Aided Design 28(6-7), 507–517 (1996)CrossRefGoogle Scholar
  16. 16.
    Udupa, J., Odhner, O.: Fast visualization, manipulation and analysis of binary volumetric objects. IEEE Computer Graphics and Applications 11(6), 53–62 (1991)CrossRefGoogle Scholar
  17. 17.
    Zhou, Y., Toga, A.W.: Efficient skeletonization of volumetric objects. IEEE Transactions on Visualization and Computer Graphics 5(3), 196–209 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jorge Rodríguez
    • 1
  • Federico Thomas
    • 2
  • Dolors Ayala
    • 1
  • Lluís Ros
    • 2
  1. 1.Computer Science Department (LSI)Technical University of Catalonia (UPC)BarcelonaSpain
  2. 2.Industrial Robotics Institute (CSIC-UPC)BarcelonaSpain

Personalised recommendations