Binary Shape Normalization Using the Radon Transform

  • Salvatore Tabbone
  • Laurent Wendling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2886)

Abstract

This paper presents a novel approach to normalize binary shapes which is based on the Radon transform. The key idea of the paper is an original adaptation of the Radon transform. The binary shape is projected in Radon space for different levels of the (3-4) distance transform. This decomposition gives rise to a representation which has a nice behavior with respect to common geometrical transformations. The accuracy and the efficiency of the proposed algorithm in the presence of a variety of transformations is demonstrated within a shape recognition process.

Keywords

Medial Axis Contour Point Fourier Descriptor Radon Transform Distance Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on PAMI 24(4), 509–522 (2002)Google Scholar
  2. 2.
    Borgefors, G.: Distance Transformations in Arbitrary Dimensions. CVGIP 27, 321–345 (1984)Google Scholar
  3. 3.
    Bracewell, R.N.: Two-Dimensional Imaging, pp. 505–537. Prentice Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  4. 4.
    Cortadellas, J., Amat, J., Frigola, M.: Robust Normalization of Shapes. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, p. 255. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Deans, S.R.: Applications of the Radon Transform. Wiley Interscience Publications, New York (1983)MATHGoogle Scholar
  6. 6.
    Fränti, P., Mednonogov, A., Kyrki, V., Kälviäinen, H.: Content-based Matching of Line-drawing Images Using the Hough Transform. International Journal on Document Analysis and Recognition 3(2), 117–124 (2000)CrossRefGoogle Scholar
  7. 7.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Transactions on PAMI 22(1), 4–37 (2000)Google Scholar
  8. 8.
    Kauppinen, H., Seppänen, T., Pietikäinen, M.: An Experimental Comparison of Autoregressive and Fourier-Based Descriptors in 2D Shape Classification. IEEE Transactions on PAMI 17(2), 201–207 (1995)Google Scholar
  9. 9.
    Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes. Shocks. and Deformations I: The Components of Two-Dimensional Shape and the Reaction-Diffusion Space. IJCV 15, 189–224 (1995)CrossRefGoogle Scholar
  10. 10.
    Leavers, V.F.: Use of the Radon Transform as a Method of Extracting Information about Shape in two Dimensions. Image Vision and Computing 10(2), 99–107 (1992)CrossRefGoogle Scholar
  11. 11.
    Leavers, V.F.: Use of the Two-Dimensional Radon Transform to Generate a Taxonomy of Shape for the Characterization of Abrasive Powder Particles. IEEE Transactions on PAMI 22(12), 1411–1423 (2000)Google Scholar
  12. 12.
    Loncaric, S.: A Survey of Shape Analysis Techniques. Pattern Recognition 31(8), 983–1001 (1998)CrossRefGoogle Scholar
  13. 13.
    Mokhtarian, F., Abbasi, S.: Shape Similarity Retrieval under Affine Transforms. Pattern Recognition 10(2), 31–41 (2002)CrossRefGoogle Scholar
  14. 14.
    Pelillo, M., Siddiqi, K., Zucker, S.: Matching Hierarchical Structures Using Association Graphs. IEEE Transactions on PAMI 21(11), 1105–1119 (1999)Google Scholar
  15. 15.
    Persoon, E., Fu, K.: Shape Discrimination using Fourier Descriptors. IEEE Transactions on SMC 7(3), 170–179 (1977)MathSciNetGoogle Scholar
  16. 16.
    Rui, Y., She, A., Huang, T.S.: A Modified Fourier Descriptor for Shape Matching in MARS. Image Databases and Multimedia Search 8, 165–180 (1998)CrossRefGoogle Scholar
  17. 17.
    Sanniti di Baja, G., Thiel, E.: Skeletonization algorithm running on path-based distance maps. Image and Vision Computing 14, 47–57 (1996)CrossRefGoogle Scholar
  18. 18.
    Sebastian, T.B., Klein, P.N., Kimia, B.: Recognition of Shapes by Editing Shock Graphs. In: ICCV 2001, pp. 755–762 (2001)Google Scholar
  19. 19.
    Sebastian, T.B., Klein, P.N., Kimia, B.: Shock-based Indexing into Large Shape Databases. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 731–746. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Sharvit, D., Chan, J., Tek, H., Kimia, B.: Symmetry-based Indexing of Image Databases. Journal of Visual Communication and Image Representation (1998)Google Scholar
  21. 21.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock Graphs and Shape Matching. IJCV 35(1), 13–39 (1999)CrossRefGoogle Scholar
  22. 22.
    Toft, P.: The Radon Transform - Theory and Implementation Ph.D. thesis. Department of Mathematical Modelling. Technical University of Denmark (June 1996)Google Scholar
  23. 23.
    Urdiales, C., Bandera, A., Sandoval, F.: Non-parametric Planar Shape Representation Based on Adaptive Curvature Functions. Pattern Recognition 35, 43–53 (2002)MATHCrossRefGoogle Scholar
  24. 24.
    Zhu, S.C., Yuille, A.L.: FORM: A Flexible Object Recognition and Modelling System. IJCV 20(3), 187–212 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Salvatore Tabbone
    • 1
  • Laurent Wendling
    • 1
  1. 1.LORIA, Campus scientifiqueVandœuvre-les-Nancy CedexFrance

Personalised recommendations