Advertisement

Workflow Mining: Current Status and Future Directions

  • A. K. A. de Medeiros
  • W. M. P. van der Aalst
  • A. J. M. M. Weijters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2888)

Abstract

Current workflow management systems require the explicit design of the workflows that express the business process of an organization. This process design is very time consuming and error prone. Considerable work has been done to develop heuristics to mine event-data logs to produce a process model that can support the workflow design process. However, all the existing heuristic-based mining algorithms have their limitations. To achieve more insight into these limitations the starting point in this paper is the α-algorithm [3] for which it is proved under which conditions and process constructs the algorithm works. After presentation of the α-algorithm, a classification is given of the process constructs that are difficult to handle for this type of algorithms. Then, for some constructs (i.e. short loops) it is illustrated in which way the α-algorithm can be extended so that it can correctly discover these constructs.

Keywords

Process mining workflow mining Petri nets workflow Petri nets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., van Dongen, B.F.: Discovering Workflow Performance Models from Timed Logs. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 45–63. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering (2003) (accepted for publication)Google Scholar
  3. 3.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering, TKDE (2003) (accepted for publication)Google Scholar
  4. 4.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Sixth International Conference on Extending Database Technology, pp. 469–483 (1998)Google Scholar
  5. 5.
    Angluin, D., Smith, C.H.: Inductive Inference: Theory and Methods. Computing Surveys 15(3), 237–269 (1983)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event- Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)CrossRefGoogle Scholar
  7. 7.
    Cook, J.E., Wolf, A.L.: Event-Based Detection of Concurrency. In: Proceedings of the Sixth International Symposium on the Foundations of Software Engineering (FSE-6), pp. 35–45 (1998)Google Scholar
  8. 8.
    Cook, J.E., Wolf, A.L.: Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model. ACM Transactions on Software Engineering and Methodology 8(2), 147–176 (1999)CrossRefGoogle Scholar
  9. 9.
    Gold, E.M.: Complexity of Automaton Identification from Given Data. Information and Control 37(3), 302–320 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Herbst, J.: Dealing with Concurrency in Workflow Induction. In: Baake, U., Zobel, R., Al-Akaidi, M. (eds.) European Concurrent Engineering Conference. SCS Europe (2000)Google Scholar
  11. 11.
    Herbst, J.: Ein induktiver Ansatz zur Akquisition und Adaption von Workflow- Modellen. PhD thesis, Universität Ulm (November 2001)Google Scholar
  12. 12.
    Herbst, J., Karagiannis, D.: Integrating Machine Learning and Workflow Management to Support Acquisition and Adaptation of Workflow Models. International Journal of Intelligent Systems in Accounting, Finance and Management 9, 67–92 (2000)CrossRefGoogle Scholar
  13. 13.
    Kiepuszewski, B.: Expressiveness and Suitability of Languages for Control Flow Modelling in Workflows. PhD thesis, Queensland University of Technology, Brisbane, Australia (2002) (submitted), Available via http://www.tm.tue.nl/it/research/patterns
  14. 14.
    Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., van den Bosch, A.: Process Mining: Discovering Direct Successors in Process Logs. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 364–373. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Maxeiner, M.K., Küspert, K., Leymann, F.: Data Mining von Workflow- Protokollen zur teilautomatisierten Konstruktion von Prozeßmodellen. In: Proceedings of Datenbanksysteme in Büro, Technik und Wissenschaft. Informatik Aktuell, pp. 75–84. Springer, Berlin (2001)Google Scholar
  16. 16.
    Pitt, L.: Inductive Inference, DFAs, and Computational Complexity. In: Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1889)Google Scholar
  17. 17.
    Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  18. 18.
    Schimm, G.: Process Mining, http://www.processmining.de/
  19. 19.
    Schimm, G.: Process Miner – A Tool for Mining Process Schemes from Eventbased Data. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 525–528. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. K. A. de Medeiros
    • 1
  • W. M. P. van der Aalst
    • 1
  • A. J. M. M. Weijters
    • 1
  1. 1.Department of Technology ManagementEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations