Variations of Diffie-Hellman Problem

  • Feng Bao
  • Robert H. Deng
  • HuaFei Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2836)


This paper studies various computational and decisional Diffie-Hellman problems by providing reductions among them in the high granularity setting. We show that all three variations of computational Diffie-Hellman problem: square Diffie-Hellman problem, inverse Diffie-Hellman problem and divisible Diffie-Hellman problem, are equivalent with optimal reduction. Also, we are considering variations of the decisional Diffie-Hellman problem in single sample and polynomial samples settings, and we are able to show that all variations are equivalent except for the argument DDH \(\Leftarrow\) SDDH. We are not able to prove or disprove this statement, thus leave an interesting open problem.


Diffie-Hellman problem Square Diffie-Hellman problem Inverse Diffie-Hellman problem Divisible Diffie-Hellman problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biham, E., Boneh, D., Reingold, O.: Breaking generalized Diffie Hellman modulo a composite is no easier than factoring. Information Processing Letters 70, 83–87 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bresson, E., Chevassut, O., Pointcheval, D.: The group diffie-hellman problems. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 325–338. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Burmester, M., Desmedt, Y., Seberry, J.: Equitable key escrow with limited time span (or, how to enforce time expiration cryptographically). In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 380–391. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Beaver, D.: Foundations of Secure Interactive Computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Boneh, D.: The Decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asynchronous Byzantine agreement using cryptography. In: Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing, Portland, Oregon, ACM, New York (2000); Full version appeared as Cryptology ePrint Archive Report 2000/034 (2000/7/7)Google Scholar
  7. 7.
    Camenisch, J., Maurer, U., Stadler, M.: Digital payment systems with passive anonymity evoking trustees. In: Martella, G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 33–43. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory IT 2(6), 644–654 (1976)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Handschuh, H., Tsiounis, Y., Yung, M.: Decision oracles are equivalent to matching oracles. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, p. 276. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    McCurley, K.S.: The discrete logarithm problem. In: Pomerance, C. (ed.) Cryptology and Computational Number Theory. Proceedings of Symposia in Applied Mathematics, vol. 42, pp. 49–74. American Mathematical Society, Providence (1990)Google Scholar
  12. 12.
    Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Maurer, U.M., Wolf, S.: Diffie-Hellman, Decision Diffie-Hellman, and discrete logarithms. In: IEEE Symposium on Information Theory, Cambridge, USA, August 1998, p. 327 (1998)Google Scholar
  15. 15.
    Naor, M., Reingold, O.: Number theoretic constructions of efficient pseudorandom functions. In: 38th Symposium on Foundations of Computer Science (FOCS), pp. 458–467. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  16. 16.
    Okamoto, T., Pointcheval, D.: The Gap-Problems: a New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Pfitzmann, B., Sadeghi, A.: Anonymous fingerprinting with direct non-repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–414. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Sadeghi, A.-R., Steiner, M.: Assumptions Related to Discrete Logarithms: Why Subtleties Make a Real Difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 243–260. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Transactions on Parallel and Distributed Systems 11(8), 769–780 (2000)CrossRefGoogle Scholar
  21. 21.
    Wolf, S.: Information theoretically and Computationally Secure Key Agreement in Cryptography. PhD thesis, ETH Zurich (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Feng Bao
    • 1
  • Robert H. Deng
    • 1
  • HuaFei Zhu
    • 1
  1. 1.Infocomm Security DepartmentInstitute for Infocomm ResearchSingapore

Personalised recommendations