Grid Refinement in Adaptive Non-rigid Registration

  • Hyunjin Park
  • Charles R. Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2879)

Abstract

Non-rigid mutual information (MI) registration algorithms with many degrees of freedom (DOF) are quite useful, but they come at high computational cost and have convergence issues. As a remedy adaptive non-rigid registration algorithms, where DOF is increased adaptively (i.e. the grid is refined adaptively), have been proposed. There are at least two ways to refine a grid adaptively: one based on changes in the global measure, the other based on a local measure. We compare these two and show that a local measure method can have better sensitivity to deformations than the global measure. The local measure employed is a novel method using local entropies and local MI.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Physics in medicine and biology, vol. 46, pp. r1–r45 (2001)Google Scholar
  2. 2.
    Meyer, C.R., Boes, J.L., Kim, B., Bland, P., et al.: Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin plate spline warped geometric deformations. Medical Image Analysis 3, 195–206 (1997)CrossRefGoogle Scholar
  3. 3.
    Rhode, G.K., Aldroubi, A., Dawant, B.M.: Adaptive free form deformation for interpatient medical image registration. In: IPMI 2001, Proceedings of SPIE, vol. 4322, pp. 1578–1787 (2001)Google Scholar
  4. 4.
    Rhode, G.K., Aldroubi, A., Dawant, B.M.: The adaptive bases algorithm for nonrigid image registration. In: IPMI 2002, Proceeding of SPIE, vol. 4684, pp. 933–944 (2002)Google Scholar
  5. 5.
    Rohlfing, T., Maurer, C.R.: Intensity based non-rigid registration using adaptive multilevel free form deformation with an incompressibility constraint. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 111–119. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Schnabel, J.A., Reuckert, D., Quist, M., et al.: A generic framework for non-rigid registration based on non-uniform multi-level free form deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 573–581. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. on Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  8. 8.
    Izenman, A.: Recent development in nonparametric estimation. Journal of American Statistical Association 86(413), 205–224 (1991)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Skolnik, M.I.: Introduction to radar systems, 3rd edn. McGraw-Hill, New York (2000)Google Scholar
  10. 10.
    Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database. NeuroImage 5(4), part 2/4, S425 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hyunjin Park
    • 1
  • Charles R. Meyer
    • 1
  1. 1.Department of RadiologyUniversity of Michigan Medical SchoolUSA

Personalised recommendations