Computing 3D Non-rigid Brain Registration Using Extended Robust Point Matching for Composite Multisubject fMRI Analysis

  • Xenophon Papademetris
  • Andrea P. Jackowski
  • Robert T. Schultz
  • Lawrence H. Staib
  • James S. Duncan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2879)


In this paper we present extensions to the Robust Point Matching framework to improve its ability to handle larger point sets with greater computational efficiency. While in the past this methodology has only been used to register either two-dimensional or small synthetic three-dimensional data-sets we demonstrate its first successful application on large real 3D data-sets. We apply this methodology to the problem of forming composite activation maps from functional magnetic resonance images. In particular we demonstrate the superior performance of this algorithm to a pure intensity-based registration in the specific area of the fusiform gyrus. We also demonstrate that the robustness of this method can be useful in the case where part of the brain is missing as a result of incorrect image slice specification.


fMRI Data Fusiform Gyrus Nonrigid Registration Medical Image Computing Deterministic Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Christensen, G.E., Miller, M.I., Vannier, M.W.: Individualizing neuroanatomical atlases using a massively parallel computer. Computer, 32–38 (January 1996)Google Scholar
  2. 2.
    Chui, H., Rangarajan, A.: A newalgorithm for non-rigid point matching. In: Proceedings of IEEE Conf. on Computer Vision and Pattern Recognition–CVPR 2000, vol. 2, pp. 44–51. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  3. 3.
    Collins, D.L., Le Goualher, G., Evans, A.C.: Non-linear cerebral registration with sulcal constraints. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 974–984. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Corouge, I., Barillot, C., Hellier, P., Toulouse, P., Gibaud, B.: Non-linear local registration of functional data. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 948–956. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Davatzikos, C.: Spatial transformation and registration of brain images using elastically deformable models. Comp. Vision Image Under. 66(2), 207–222 (1997)CrossRefGoogle Scholar
  6. 6.
    Feldmar, J., Malandain, G., Declerck, J., Ayache, N.: Extension of the ICP algorithm to non-rigid intensity-based registration of 3D volumes. In: Proc. Workshop Math. Meth. Biomed. Image Anal., June 1996, pp. 84–93 (1996)Google Scholar
  7. 7.
    Friston, K.J., Ashburner, J., Poline, J.B., Frackowiak, R.S.J., Turner, R.: Spatial registration and normalization of images. Hum. Brain Mapping 2, 165–189 (1995)CrossRefGoogle Scholar
  8. 8.
    Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign Procrustes matching algorithm. In: Information Proc. Med. Imaging, pp. 29–42 (1997)Google Scholar
  9. 9.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  10. 10.
    Schultz, R.T., Grelotti, D.J., Klin, A., Kleinman, J., Van der Gaag, C., Marios, R., Skudlarski, P.: The role of the fusiform face area in social cognition: Implications for the pathobiology of autism. Phil. Trans. Roy. Soc., Ser. B 458, 415–427 (2003)CrossRefGoogle Scholar
  11. 11.
    Studholme, C., Hill, D., Hawkes, D.: Automated 3D registration of magnetic resonance and positron emission tomography brain images by multiresolution optimisation of voxel similarity measures. Med. Phys. 24(1), 25–35 (1997)CrossRefGoogle Scholar
  12. 12.
    Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. Thieme Medical Publishers, New York (1988)Google Scholar
  13. 13.
    Thirion, J.P.: Image matching as a diffusion process: An analogy with maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)CrossRefGoogle Scholar
  14. 14.
    Toga, W.: Brain Warping. Academic Press, San Diego (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Xenophon Papademetris
    • 3
  • Andrea P. Jackowski
    • 3
  • Robert T. Schultz
    • 3
  • Lawrence H. Staib
    • 1
    • 2
  • James S. Duncan
    • 1
    • 2
  1. 1.Departments of Elec. EngineeringYale University New HavenUSA
  2. 2.Diag. RadiologyYale University New HavenUSA
  3. 3.Child Study CenterYale University New HavenUSA

Personalised recommendations