Comparison of Local External Force Functions for Non-rigid Registration of 3D Medical Images

  • Hannu Helminen
  • Jyrki Alakuijala
  • Katja Pesola
  • Joakim Laitinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2879)

Abstract

Non-rigid volumetric registration has many applications, including inter-patient image fusion, motion quantification, and automatic atlas-based segmentation. Computation time is often a limiting factor in using current methods in clinical environments. Minimizing computation time requires both the internal and the external force updates to be as efficient as possible. In this article, we concentrate on the choice of the external force function. We compare different methods based on optical flow and propose a new correlation-based external force function. In addition, we propose an acceleration technique and study its effect on image quality and the speed of convergence. The results indicate that the acceleration technique improves both the speed and quality, and increases the stability of all the external force methods considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Mohiaddin, R., Rueckert, D.: Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 642–650. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Hellier, P., Barillot, C.: Multimodal non-rigid warping for correction of distortions in functional MRI. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 512–520. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)CrossRefGoogle Scholar
  4. 4.
    Thirion, J.-P., Gourdon, A.: The 3D marching lines algorithm and its application to crest lines extraction. Research Report RR-1672, Epidure Project, INRIA (1992)Google Scholar
  5. 5.
    Rueckert, D., Hayes, C., Studholme, C., Summers, P., Leach, M., Hawkes, D.J.: Nonrigid Registration of Breast MR Images Using Mutual Information. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1144–1152. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Hartkens, T., Hill, D.L.G., Castellano-Smith, A.D., Hawkes, D.J., Maurer Jr., C.R., Martin, A.J., Hall, W.A., Liu, H., Truwit, C.L.: Using points and surfaces to improve voxel-based non-rigid registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 565–572. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Thirion, J.-P.: Fast non-rigid matching of 3D medical image. Research Report RR- 2547, Epidure Project, INRIA (1995)Google Scholar
  8. 8.
    Pennec, X., Cachier, P., Ayache, N.: Understanding the “Demon’s Algorithm”: 3D Non-Rigid registration by Gradient Descent. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 597–605. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hannu Helminen
    • 1
  • Jyrki Alakuijala
    • 1
  • Katja Pesola
    • 1
  • Joakim Laitinen
    • 1
  1. 1.Varian Medical Systems Finland OyHelsinkiFinland

Personalised recommendations