Vascular Attributes and Malignant Brain Tumors

  • Elizabeth Bullitt
  • Guido Gerig
  • Stephen Aylward
  • Sarang Joshi
  • Keith Smith
  • Matthew Ewend
  • Weili Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2878)


Many diseases affect blood vessel morphology. This report analyzes vessel attributes (tortuosity, vessel density, radius, and terminal branch count) within 5 malignant gliomas as seen by high-resolution MR. Results are compared to those in the same anatomical region of 14 normal controls. All tumor patients had marked increases in vessel tortuosity and terminal branch count. These results raise the interesting possibility of automatically defining “vessels of malignancy” within regions of interest on medical images.


Malignant Glioma Terminal Branch Malignant Brain Tumor Affine Registration Vessel Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Burger, P.C., Scheithauer, B.W., Vogel, F.S.: Surgical Pathology of the Nervous System and its Coverings, 3rd edn. Churchill Livingstone, New York (1991)Google Scholar
  2. 2.
    Jain, R.K.: Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy Nature Medicine, vol. 7, pp. 987–998 (2001)Google Scholar
  3. 3.
    Kaufman, H.H., Ostrow, P.T., Butler, I.J.: Diagnostic brain biopsy. In: Wilkins, R.H., Rengachery, S.S. (eds.) Neurosurgery, pp. 289–294. McGraw-Hill, New York (1985)Google Scholar
  4. 4.
    Kahn, D., Follett, K.A., Bushnell, D.L., et al.: Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. AJR Am. J. Roentgenol. 163, 1459–1465 (1994)Google Scholar
  5. 5.
    Yoshii, Y., Moritake, T., Suzuki, K., et al.: Cerebral radiation necrosis with accumulation of thallium 201 on single-photon emission CT. AJNR Am. J. Neuroradiol 17, 1773–1776 (1996)Google Scholar
  6. 6.
    Ricci, P.: Differentiating recurrent tumor from radiation necrosis with 18FDG-PET: time for reevaluation? In: Proceedings of the 34th Annual Meeting of the American Society of Neuroradiology, Seattle, Wash (1996)Google Scholar
  7. 7.
    Benard, F., Romsa, J., Hustinx, R.: Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Seminars Nuc. Med. 23, 148–162 (2003)CrossRefGoogle Scholar
  8. 8.
    Smedby, O., Hogman, N., Nilsson, S., Erikson, U., Olsson, A.G., Walldius, G.: Two dimensional tortuosity of the superficial femoral artery in early atherosclerosis. J. Vascular Research 30, 181–191 (1993)CrossRefGoogle Scholar
  9. 9.
    Bracher, D.: Changes in peripapillary tortuosity of the central retinal arteries in newborns. Graefe’s Arch. Clin. Exp. Opthalmol. 218, 211–217 (1982)CrossRefGoogle Scholar
  10. 10.
    Zhou, L.A., Rzeszotarski, M.S., Singerman, L.J., Chokreff, J.M.: The detection and quantification of retinopathy using digital angiograms. IEEE-TMI 13, 619–626 (1994)Google Scholar
  11. 11.
    Goldbaum, M.H., Hart, W.E., Cote, B.L., Raphaelian, P.V.: Automated measures of retinal blood vessel tortuosity. Invest Opthalmol. Vis. Sci. 35, 2089 (1994)Google Scholar
  12. 12.
    Hart, W.E., Goldbaum, M., Cote, B., Kube, P., Nelson, M.R.: Measurement and Classification of Retinal Vascular Tortuosity. Intl. J. Medical Informatics 53(2–3), 239–252 (1999)CrossRefGoogle Scholar
  13. 13.
    Capowski, J.J., Kylstra, J.A., Freedman, S.F.: A numeric index based on spatial frequency for the tortuosity of retinal vessels and its application to plus disease in retinopathy of prematurity. Retina 15, 490–500 (1995)Google Scholar
  14. 14.
    Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., Walsum, T.V., Viergever, M.A.: Quantification of vessel morphology from 3D MRA. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 358–367. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    De Bruijne, M., van Ginneken, B., Niessen, W.J., Maintz, J.B.A.: Active shape model based segmentation of abdominal aortic aneurysms in CTA images. In: SPIE, vol. 4684, pp. 463–474 (2002)Google Scholar
  16. 16.
    Bullitt, E., Gerig, G., Pizer, S.M., Lin, W.: Aylward SR Measuring tortuosity of the intracerebral vasculature from MRA images. Accepted IEEE-TMI pending minor revision, Available at:
  17. 17.
    Aylward, S., Bullitt, E.: Initialization, noise, singularities and scale in height ridge traversal for tubular object centerline extraction. IEEE-TMI 21, 61–75 (2002)Google Scholar
  18. 18.
    Bullitt, E., Aylward, S., Smith, K., Mukherji, S., Jiroutek, M., Muller, K.: Symbolic Description of Intracerebral Vessels Segmented from MRA and Evaluation by Comparison with X Ray Angiograms. Medical Image Analysis 5, 157–169 (2001)CrossRefGoogle Scholar
  19. 19.
    Prastawa, M., Bullitt, E., Gerig, G.: Robust estimation for brain tumor segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 530–537. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Schnabel, J.A., Rueckert, D., Quist, M., Blackall, J.M., Castellano Smith, A.D., Hartkens, T., Penney, G.P., Hall, W.A., Liu, H., Truwit, C.L., Gerritsen, F.A., Hill, D.L.G., Hawkes, J.D.: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 573–581. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  22. 22.
    Rueckert, D.: Rview (2002), Available:
  23. 23.
    Aylward, S.R., Jomier, J., Weeks, S., Bullitt, E.: Registration and analysis of vascular images. IJCV (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Elizabeth Bullitt
    • 1
  • Guido Gerig
    • 2
  • Stephen Aylward
    • 3
  • Sarang Joshi
    • 4
  • Keith Smith
    • 2
  • Matthew Ewend
    • 1
  • Weili Lin
    • 3
  1. 1.Department of SurgeryUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Computer ScienceUniversity of North CarolinaChapel HillUSA
  3. 3.Department of RadiologyUniversity of North CarolinaChapel HillUSA
  4. 4.Department of Radiation OncologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations