Segmentation and Evaluation of Adipose Tissue from Whole Body MRI Scans

  • Yinpeng Jin
  • Celina Z. Imielinska
  • Andrew F. Laine
  • Jayaram Udupa
  • Wei Shen
  • Steven B. Heymsfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2878)

Abstract

Accurate quantification of total body and the distribution of regional adipose tissue using manual segmentation is a challenging problem due to the high variation between manual delineations. Manual segmentation also requires highly trained experts with knowledge of anatomy. We present a hybrid segmentation method that provides robust delineation results for adipose tissue from whole body MRI scans. A formal evaluation of accuracy of the segmentation method is performed. This semi-automatic segmentation algorithm reduces significantly the time required for quantification of adipose tissue, and the accuracy measurements show that the results are close to the ground truth obtained from manual segmentations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flegal, K., Carroll, M., Kuczmarski, R., Johnson, C.: Overweight and obesity in the United States: prevalence and trends. Int. J. Obesity 22, 38–47 (1998)CrossRefGoogle Scholar
  2. 2.
    NIH Clinical Guidelines on the Identification: Evaluation and Treatment of Overweight and Obesity in Adults-the Evidence Report. Obesity Res. vol. 6, pp. 51S–209S (1998)Google Scholar
  3. 3.
    PiSunyer, F.X.: Medical Hazards of Obesity. Annals of Internal Medicine 119, 644–660 (1993)Google Scholar
  4. 4.
    Park, Y.W., Zhu, S.K., Palaniappan, L., Heshka, S., Carnethon, M.R., Heymsfield, S.B.: The metabolic syndrome: prevalence and associated risk factors. Archives and Internal Medicine (in press)Google Scholar
  5. 5.
    Ross, R., Leger, L., Guardo, R., Guise, J.D., Pike, B.G.: Adipose tissue volume measured by magnetic resonance imaging and computerized tomography in rats. J. App. Physiol. 70, 2164–2172 (1991)Google Scholar
  6. 6.
    Ross, R.: Magnetic resonance imaging provides new insights into the characterization or adipose and lean tissue distribution. Can. J. Physiol. Pharmacol. 74, 778–785 (1996)CrossRefGoogle Scholar
  7. 7.
    Rogowska, J., Batchelder, K., Gazelle, G.S., Halpern, E.F., Connor, W., Wolf, G.L.: Evaluation of selected two-dimensional segmentation techniques for computed tomography quantitation of lymph nodes. Invest. Radiol. 31, 138–145 (1996)CrossRefGoogle Scholar
  8. 8.
    Elbers, J., Haumann, G., Asscheman, H., Seidell, J., Gooren, L.R.: Reproducibility of fat area measurements in young, non-obese subjects by computerized analysis of magnetic resonance images. Int. J. Obes. Relat. Metab. Disord. 21, 1121–1129 (1997)CrossRefGoogle Scholar
  9. 9.
    Yang, G.Z., Myerson, S., Chabat, F., Pennell, D.J., Firmin, D.N.: Automatic MRI adipose tissue mapping using overlapping mosaics. MAGMA 4, 39–44 (2002)CrossRefGoogle Scholar
  10. 10.
    Angelini, E., Imielinska, C., Jin, Y., Laine, A.: Improving statistics for hybrid segmentation of high-resolution multichannel images. In: SPIE Annual meeting on Medical Imaging, vol. 4684(1), pp. 401–411 (2002)Google Scholar
  11. 11.
    Imielinska, C., Metaxas, D., Udupa, J., Jin, Y., Chen, T.: Hybrid Segmentation Methods of Anatomical Data. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1048–1057. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Udupa, J., LaBlanc, V., Schmidt, H., Imielinska, C., Saha, P., Grevera, G., Zhuge, Y., Molholt, P., Jin, Y., Currie, L.: A Methodology for Evaluating Image Segmentation Algorithm. In: SPIE Conference on Medical Imaging, San Diego CA, vol. 4684, pp. 266–277 (2002)Google Scholar
  13. 13.
    Jones, T.N., Metaxas, D.N.: Automated 3D segmentation using deformable models and fuzzy affinity. In: 15th International conference, Information Processing in Medical Imaging, Vermont, USA, pp. 113–126 (1997)Google Scholar
  14. 14.
    Jones, T.N., Metaxas, D.N.: Image Segmentation based on the integration of pixel affinity and deformable models. Computer Vision and Pattern Recognition, Sant Barbara, CA (1998)Google Scholar
  15. 15.
    Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: Theory, algorithms and applications in image segmentation. Graphical Models and Image Processing 58, 246–261 (1996)CrossRefGoogle Scholar
  16. 16.
    Imielinska, C., Downes, M.S., Yuan, W.: Semi-automated color segmenation of anatomical tissue. Computerized Medical Imaging and Graphics 24, 173–180 (2000)CrossRefGoogle Scholar
  17. 17.
    Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, New York (1985)Google Scholar
  18. 18.
    Sethian, J.: Level set methods and fast marching methods (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Yinpeng Jin
    • 1
  • Celina Z. Imielinska
    • 2
  • Andrew F. Laine
    • 1
  • Jayaram Udupa
    • 3
  • Wei Shen
    • 4
  • Steven B. Heymsfield
    • 4
  1. 1.Department of Biomedical EngineeringColumbia University 
  2. 2.College of Physicians and Surgeons, Office of Scholarly Resources Department of Medical Informatics and Department of Computer ScienceColumbia University 
  3. 3.Medical Image Processing Group, Deptartment of RadiologyUniversity of Pennsylvania 
  4. 4.Obesity Research Center, St. Luke’s-Roosevelt Hospital and Institute of Human NutritionColumbia University College of Physicians and Surgeons 

Personalised recommendations