4-D Tomographic Representation of Coronary Arteries from One Rotational X-Ray Sequence

  • Christophe Blondel
  • Grégoire Malandain
  • Régis Vaillant
  • Frédéric Devernay
  • Ève Coste-Manière
  • Nicholas Ayache
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2878)

Abstract

We present a complete and fully automatic method to compute a 4-D tomographic representation of coronary arteries from one single rotational monoplane X-ray sequence. The major steps of our method are the following: (1) images filtering, (2) arteries segmentation, (3) arteries matching and reconstruction, (4) parametric deformation field computation, and (5) deformation-compensated tomographic reconstruction. Steps (2) and (3) involve only a few frames, acquired at the same cardiac cycle phase, while the steps (1), (4), and (5) use the frames acquired at all cardiac cycle phases. The originality of the presented work mainly lies in the last two steps that result in a 4-D tomographic representation, allowing for the visualization of coronary arteries anatomy from any point of view, and at any cardiac cycle time. Experiments have been conducted on one synthetic data set and on 10 patient data sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blondel, C., Vaillant, R., Devernay, F., Malandain, G., Ayache, N.: Automatic trinocular 3D reconstruction of coronary artery centerlines from rotational x-ray angiography. In: Proc. of CARS, Paris, pp. 832–837. Springer, Heidelberg (2002)Google Scholar
  2. 2.
    Ding, Z., Friedman, M.H.: Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms. International Journal of Cardiac Imaging 16(5), 331–346 (2000)CrossRefGoogle Scholar
  3. 3.
    Geist, A., Beguelin, A., Dongarra, J.J., Jiang, W., Manchek, R., Sunderam, V.S.: PVM 3 user’s guide and reference manual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory (1993)Google Scholar
  4. 4.
    Gill, P.E., Murray, W., Wright, M.H.: Practical optimization. Academic Press, London (1982)Google Scholar
  5. 5.
    Herman, G.: Image reconstruction from projections. Academic Press, London (1980)MATHGoogle Scholar
  6. 6.
    Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Computer Vision and Image Understanding 80(2), 130–171 (2000)MATHCrossRefGoogle Scholar
  7. 7.
    Mourgues, F., Devernay, F., Malandain, G., Coste-Manière, È.: 3D+t modeling of coronary artery tree from standard non simultaneous angiograms. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1320–1322. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Radeva, P., Amini, A., Huang, J.: Deformable B-solids and implicit snakes for 3D localization and tracking of SPAMM MRI data. Computer Vision and Image Understanding 66(2), 163–178 (1997)CrossRefGoogle Scholar
  9. 9.
    Rasche, V., Grass, M., Koppe, R., Bücker, A., Günther, R.W., Kühl, H., Op de Beek, J., Bertram, R., Suurmond, R.: ECG-gated 3D rotational coronary angiography. In: Proc. of CARS, Paris, pp. 826–831. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Shechter, G., Devernay, F., Coste-Manière, È., McVeigh, E.R.: Temporal tracking of 3D coronary arteries in projection angiograms. In: Proc. of SPIE Medical Imaging (2002)Google Scholar
  11. 11.
    Triggs, B., Zisserman, A., Szeliski, R.: ICCV-WS 1999. LNCS, vol. 1883. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Riederer, S.J., Ehman, R.L.: Respiratory motion of the heart: Kinematics and the implications for the spatial resolution in coronary imaging. Magnetic Resonance in Medicine 33(5), 713–719 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Christophe Blondel
    • 1
    • 2
  • Grégoire Malandain
    • 1
  • Régis Vaillant
    • 2
  • Frédéric Devernay
    • 3
  • Ève Coste-Manière
    • 1
  • Nicholas Ayache
    • 1
  1. 1.INRIA Sophia-AntipolisSophia-AntipolisFrance
  2. 2.General Electric Medical SystemsBucFrance
  3. 3.INRIA Rhône-AlpesMontbonnotFrance

Personalised recommendations