Design and Implementation of Parallel Nonrigid Image Registration Using Off-the-Shelf Supercomputers

  • Fumihiko Ino
  • Kanrou Ooyama
  • Akira Takeuchi
  • Kenichi Hagihara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2878)


This paper presents a new parallel algorithm for nonrigid image registration using off-the-shelf supercomputers, or clusters of PCs. Our algorithm realizes scalable registration for high resolution three-dimensional (3-D) images by employing three techniques: (1) data distribution; (2) data-parallel processing; and (3) dynamic load balancing. The experimental results show that our parallel implementation on a cluster of 64 off-the-shelf PCs (with 128 processors) registers liver CT images of 512×512×159 voxels within 8 minutes while a sequential implementation takes 12 hours. Furthermore, our implementation allows processors to use less memory, and thereby enables us to align 1024×1024×590 voxel images, which is not easy for single processor systems due to the restrictions on the memory space and the processing time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rohlfing, T., Maurer, C.R.: Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Trans. Inform. Technol. Biomed. 7, 16–25 (2003)CrossRefGoogle Scholar
  2. 2.
    Warfield, S.K., Ferrant, M., et al.: Real-time biomechanical simulation of volumetric brain deformation for image guided neurosurgery. In: Reich, S., Anderson, K.M. (eds.) OHS 2000 and SC 2000. LNCS, vol. 1903, pp. 1–16. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Ourselin, S., Stefanescu, R., Pennec, X.: Robust registration of multi-modal images: Towards real-time clinical applications. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 140–147. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Buyya, R. (ed.): High Performance Cluster Computing. Prentice Hall PTR, Englewood Cliffs (1999)Google Scholar
  5. 5.
    Rueckert, D., Sonoda, L.I., et al.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18, 712–721 (1999)CrossRefGoogle Scholar
  6. 6.
    Schnabel, J.A., Rueckert, D., et al.: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 573–581. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Amdahl, G.: Validity of the single processor approach to achieving large-scale computing capabilities. In: Proc. AFIPS Conf., vol. 30, pp. 483–485 (1967)Google Scholar
  8. 8.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 416–429 (1969)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ma, K.L., Painter, J.S., Hansen, C.D., Krogh, M.F.: Parallel volume rendering using binary swap compositing. IEEE Comput. Graph. Appl. 14, 59–68 (1994)Google Scholar
  10. 10.
    O’Carroll, F., Tezuka, H., Hori, A., Ishikawa, Y.: The design and implementation of zero copy MPI using commodity hardware with a high performance network. In: Proc. 12th ACM Int’l Conf. on Supercomputing (ICS 1998), pp. 243–250 (1998)Google Scholar
  11. 11.
    Message Passing Interface Forum: MPI: A message-passing interface standard. Int’l J. of Supercomputer Applications and High Performance Computing 8, 159–416 (1994)Google Scholar
  12. 12.
    Boden, N.J., Cohen, D., et al.: Myrinet:Agigabit-per-second local-area network. IEEE Micro 15, 29–36 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Fumihiko Ino
    • 1
  • Kanrou Ooyama
    • 2
  • Akira Takeuchi
    • 2
  • Kenichi Hagihara
    • 1
  1. 1.Graduate School of Information Science and TechnologyOsaka UniversityToyonaka, OsakaJapan
  2. 2.Graduate School of Engineering ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations