Advertisement

A Modular 2-DOF Force-Sensing Instrument For Laparoscopic Surgery

  • Srinivas K. Prasad
  • Masaya Kitagawa
  • Gregory S. Fischer
  • Jason Zand
  • Mark A. Talamini
  • Russell H. Taylor
  • Allison M. Okamura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2878)

Abstract

Minimally Invasive Surgery (MIS) has enjoyed increasing attention and development over the last two decades. As MIS systems evolve, the surgeon is increasingly insulated from patient contact, creating a trade-off between surgical sensory information and patient invasiveness. Incorporation of haptic feedback into MIS systems promises to restore sensory information surrendered in favor of minimal invasiveness. We have developed a novel, biocompatible 2-DOF force-sensing sleeve that can be used modularly with a variety of 5mm laparoscopic instruments. The functional requirements for such a device are defined, and design strategies are explored. Our formal device design is outlined and device calibration is presented with derived calibration functions. Illustrative experimental force data from a porcine model is presented. This device can be used for intra-abdominal force recording and feedback in laparoscopic environments; the implications and future potential for this technology are explored.

Keywords

Minimally Invasive Surgery Haptic Feedback Haptic Information Distal Shaft Force Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bholat, O.S., Haluck, R.S., Murray, W.B., Gorman, P.J., Krummel, T.M.: Tactile Feedback is Present During Minimally Invasive Surgery. Journal of the American College of Surgeons 189, 349–355 (1999)CrossRefGoogle Scholar
  2. 2.
    Brouwer, I., Ustin, J., Bentley, L., Sherman, A., Dhruv, N., Tendick, F.: Measuring In Vivo Animal Soft Tissue Properties for Haptic Modeling in Surgical Simulation. In: Proc. of Med. Meets Virtual Reality 2001, pp. 69–74 (2001)Google Scholar
  3. 3.
    Brown, J.D., Rosen, J., Moreyra, M., Sinanan, M., Hannaford, B.: Computer-Controlled Motorized Endoscopic Grasper for In Vivo Measurement of Soft Tissue Biomechanical CharacteristicsGoogle Scholar
  4. 4.
    de Visser, H., Heijnsdijk, A.M., Herder, J.L., Pistecky, P.V.: Forces and Displacements in Colon Surgery. Surgical Endoscopy 16, 1426–1430 (2002)CrossRefGoogle Scholar
  5. 5.
    Dubois, P., Thommen, Q., Jambon, A.C.: In Vivo Measurement of Surgical Gestures. IEEE Transactions on Biomedical Engineering 49(1), 49–54 (2002)CrossRefGoogle Scholar
  6. 6.
    Hyltander, A., Liljegren, E., Rhodin, P.H., Lönroth, H.: The Transfer of Basic Skills Learned in a Laparoscopic Simulator to the Operating Room. Surgical Endoscopy 16, 1324–1328 (2002)CrossRefGoogle Scholar
  7. 7.
    Poulose, B.K., Kutka, M.F., Mendoza-Sagaon, M., Barnes, A.C., Yang, C., Taylor, R.H., Talamini, M., Human, v.: Human vs. Robotic Organ Retraction during Laparoscopic Nissen Fundoplication. Surg Endoscopy 13, 461–465 (1999)CrossRefGoogle Scholar
  8. 8.
    Richards, C., Rosen, J., Hannaford, B., Pellegrini, C., Sinanan, M.: Skills Evaluation in Minimally Invasive Surgery using Force/Torque Signatures. Surgical Endoscopy 14, 791–798 (2000)CrossRefGoogle Scholar
  9. 9.
    Rogers, D.A., Regehr, G., Howdieshell, T.R., Yeh, K.A., Palm, E.: The Impact of External Feedback on Computer-Assisted Learning for Surgical Technical Skill Training. American Journal of Surgery 179, 341–343 (2000)CrossRefGoogle Scholar
  10. 10.
    Rosen, J., Brown, J.D., Chang, L., Barreca, M., Sinanan, M., Hannaford, B.: The BlueDRAGON – A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo. In: Proceedings of IEEE ICRA, Washington, DC (May 2002)Google Scholar
  11. 11.
    Rosen, J., Hannaford, B., MacFarlane, M.P., Sinanan, M.N.: Force Controlled and Teleoperated Endoscopic Grasper for Minimally Invasive Surgery – Experimental Performance Evaluation. IEEE Transactions on Biomedical Engineering 46(10), 1212–1221 (1999)CrossRefGoogle Scholar
  12. 12.
    Rosen, J., MacFarlane, M., Richards, C., Hannaford, B., Sinanan, M.: Surgeon-Tool Force/Torque Signatures – Evaluation of Surgical Skills in Minimally Invasive Surgery. In: Proceedings of Medicine Meets Virtual Reality, San Francisco, CA (January 1999)Google Scholar
  13. 13.
    Rosen, J., Solazzo, M., Hannaford, B., Sinanan, M.: Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents’ Learning Curve Using Hidden Markov Model. C.A.S. 7, 49–61 (2002)Google Scholar
  14. 14.
    Smith, C.D., Farrell, T.M., McNatt, S.S., Metreveli, R.E.: Assessing Laparoscopic Manipulative Skills. American Journal of Surgery 181, 547–550 (2001)CrossRefGoogle Scholar
  15. 15.
    Wagner, C.R., Stylopoulos, N., Howe, R.: The Role of Force Feedback in Surgery: Analysis of Blunt Dissection. In: Proceedings of Tenth Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Orlando, FL (March 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Srinivas K. Prasad
    • 1
    • 3
  • Masaya Kitagawa
    • 1
  • Gregory S. Fischer
    • 1
  • Jason Zand
    • 2
  • Mark A. Talamini
    • 2
  • Russell H. Taylor
    • 1
  • Allison M. Okamura
    • 1
  1. 1.Johns Hopkins University Engineering Research Center for Computer Integrated Surgical Systems and TechnologyBaltimoreUSA
  2. 2.Department of Surgery Blalock 665Johns Hopkins Medical InstitutionsBaltimoreUSA
  3. 3.Department of Neurological SurgeryWashington University School of MedicineSt. LouisUSA

Personalised recommendations