On Clock Difference Constraints and Termination in Reachability Analysis of Timed Automata

  • Johan Bengtsson
  • Wang Yi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2885)


The key step to guarantee termination of reachability analysis for timed automata is the normalisation algorithms for clock constraints i.e. zones represented as DBM’s (Difference Bound Matrices). It transforms DBM’s which may contain arbitrarily large integers (the source of non-termination) into their equivalent according to the maximal constants of clocks appearing in the input timed automaton to be analysed. Surprisingly, though the zones of a timed automaton are essentially difference constraints in the form of x-y~n, as shown in this paper, it is a non-trivial task to normalise the zones of timed automata that allows difference constraints in the enabling conditions (i.e. guards) on transitions. In fact, the existing normalisation algorithms implemented in tools such as Kronos and Uppaal can only handle timed automata (as input) allowing simple constraints in the form of x~n. For a long time, this has been a serious restriction for the existing tools. Difference constraints are indeed needed in many applications e.g. in solving scheduling problems. In this paper, we present a normalisation algorithm to remove the limitation, that based on splitting, transforms DBM’s according to not only maximal constants of clocks but also the set of difference constraints appearing in an input automaton. The algorithm has been implemented and integrated in the Uppaal tool, demonstrating that little run-time overhead is needed though the worst case complexity is the same as in the construction of region automata.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABB+01]
    Amnell, T., Behrmann, G., Bengtsson, J., D’Argenio, P.R., David, A., Fehnker, A., Hune, T., Jeannet, B., Larsen, K.G., Möller, M.O., Pettersson, P., Weise, C., Yi, W.: UPPAAL - Now, Next, and Future. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 100–125. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. [AD94]
    Alur, R., Dill, D.L.: A theory of timed automata. Journal of Theoretical Computer Science 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [BDGP98]
    Bérard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive power of silent transitions in timed automata. Fundamenta Informaticae 36, 145–182 (1998)zbMATHMathSciNetGoogle Scholar
  4. [Bel57]
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  5. [BLL+96]
    Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal in 1995. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 431–434. Springer, Heidelberg (1996)Google Scholar
  6. [Dil89]
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)Google Scholar
  7. [DOTY95]
    Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool kronos. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. [Hig52]
    Higman, G.: Ordering by divisibility in abstract algebras. In: Proceedings of the London Mathematical Society. Ser. 3, vol. 2, pp. 326–336 (1952)Google Scholar
  9. [HNSY92]
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. In: Proceedings, Seventh Annual IEEE Symposium on Logic in Computer Science, pp. 394–406 (1992)Google Scholar
  10. [HNSY94]
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Technical Report TR94-1404, Cornell Computer Science Technical Report Collection (1994)Google Scholar
  11. [LPY95]
    Larsen, K.G., Pettersson, P., Yi, W.: Compositional and Symbolic Model-Checking of Real-Time Systems. In: Proc. of the 16th IEEE Real-Time Systems Symposium, December 1995, pp. 76–87. IEEE Computer Society Press, Los Alamitos (1995)CrossRefGoogle Scholar
  12. [LPY97]
    Larsen, K.G., Petterson, P., Yi, W.: Uppaal in a nutshell. Journal on Software Tools for Technology Transfer (1997)Google Scholar
  13. [Pet99]
    Pettersson, P.: Modelling and Verification of Real-Time Systems Using Timed Automata: Theory and Practice. PhD thesis, Uppsala University (1999)Google Scholar
  14. [Rok93]
    Rokicki, T.G.: Representing and Modeling Digital Circuits. PhD thesis, Stanford University (1993)Google Scholar
  15. [YL93]
    Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition systems. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 210–224. Springer, Heidelberg (1993)Google Scholar
  16. [Yov97]
    Yovine, S.: Kronos: A verification tool for real-time systems. Journal on Software Tools for Technology Transfer 1 (October 1997)Google Scholar
  17. [Yov98]
    Yovine, S.: Model checking timed automata. In: Rozenberg, G. (ed.) EEF School 1996. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998)Google Scholar
  18. [YPD94]
    Yi, W., Petterson, P., Daniels, M.: Automatic verification of real-time communicating systems by constraint-solving. In: Proceedings, Seventh International Conference on Formal Description Techniques, pp. 223–238 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Johan Bengtsson
    • 1
  • Wang Yi
    • 1
  1. 1.Department of Information TechnologyUppsala UniversitySweden

Personalised recommendations