Advertisement

Adding Action Refinement to Stochastic True Concurrency Models

  • Mila Majster-Cederbaum
  • Jinzhao Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2885)

Abstract

Action refinement is an essential operation in the hierarchical design of concurrent systems, stochastic or not. In this paper we develop techniques of action refinement in a stochastic true concurrency causality based setting, stochastic bundle event structures. A stochastic LOTOS-like process algebra is used as the specification language, where the corresponding syntactic operation of action refinement is carried out. We show that the behaviour of the refined system can be inferred compositionally from the behaviour of the original system and from the behaviour of the systems substituted for actions with explicitly represented start points, that the stochastic versions of pomset trace equivalence and history preserving bisimulation equivalence are both congruences under the refinement, and that the semantic and syntactic action refinements coincide under these equivalence relations with respect to a cpo-based denotational semantics. Therefore, our refinement operations behave well. They meet the commonly expected properties.

Keywords

Event Structure Parallel Composition Process Algebra Concurrent System Observable Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L.: Action Refinement in Process Algebra. Cambridge Univ. Press, Cambridge (1992)Google Scholar
  2. 2.
    Bernardo, M., Gorrieri, R.: A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time. Th. Comp. Sci. 202, 1–54 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brinksma, E., Hermanns, H., Katoen, J.-P.: EEF School 2000 and FMPA 2000. LNCS, vol. 2090. Springer, Heidelberg (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Brinksma, E., Katoen, J.-P., Langerak, R., Latella, D.: A Stochastic Causality- Based Process Algebra. The Computer Journal 38(7), 552–565 (1995)CrossRefGoogle Scholar
  5. 5.
    Brinksma, E., Katoen, J.-P., Langerak, R., Latella, D.: Partial-Order Models for Quantitative Extensions of LOTOS. Computer Networks & ISDN Systems 30(9/10), 925–950 (1998)CrossRefGoogle Scholar
  6. 6.
    Fecher, H., Majster-Cederbaum, M., Wu, J.: Bundle Event Structures: A Revised Cpo Approach. Information Processing Letters 83, 7–12 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fecher, H., Majster-Cederbaum, M., Wu, J.: Action Refinement for Probabilistic Processes with True Concurrency Models. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 77–94. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    van Glabbeek, R.: The Linear Time - Branching Time Spectrum. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)Google Scholar
  9. 9.
    van Glabbeek, R., Goltz, U.: Refinement of Actions and Equivalence Notions for Concurrent Systems. Acta Informatica 37, 229–327 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gorrieri, R., Rensink, A.: Action Refinement. Handbook of Process Algebra, pp. 1047–1147. Elsevier Science, Amsterdam (2001)Google Scholar
  11. 11.
    Götz, N., Herzog, U., Rettelbach, M.: Multiprocessor and Distributed System Design: The Integration of Functional Specification and Performance Analysis Using Stochastic Process Algebra. In: Donatiello, L., Nelson, R. (eds.) SIGMETRICS 1993 and Performance 1993. LNCS, vol. 729, pp. 121–146. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  12. 12.
    Harvey, C.: Performance Engineering as an Integral Part of System Design. Br. Telecom Technol. J. 4(3), 142–147 (1986)Google Scholar
  13. 13.
    Henrik, B.: Compositional Solution of Stochastic Process Algebra Models. PhD Thesis, RWTH Aachen (2002)Google Scholar
  14. 14.
    Hermanns, H.: Interactive Markov Chains. PhD Thesis, Universität Erlangen- Nürnberg (1998)Google Scholar
  15. 15.
    Hermanns, H., Katoen, J.-P.: Automated Compositional Markov Chain Generation for a Plain-Old Telephone System. Science of Computer Programming 36, 97–127 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  17. 17.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  18. 18.
    Katoen, J.-P.: Quantitative and Qualitative Extensions of Event Structures. PhD Thesis, University of Twente (1996)Google Scholar
  19. 19.
    Katoen, J.-P., D’Argenio, P.R.: General Distribution in Process Algebra. In: E. Brinksma et al [3], 375 – 429Google Scholar
  20. 20.
    Langerak, R.: Transformations and Semantics for LOTOS. PhD Thesis, University of Twente (1992)Google Scholar
  21. 21.
    Langerak, R.: Bundle Event Structures: A Non-Interleaving Semantics for LOTOS. In: Diaz, M., Groz, R. (eds.) Formal Description Techniques, pp. 331–346. Elsevier Science Publishers, Amsterdam (1993)Google Scholar
  22. 22.
    Majster-Cederbaum, M., Salger, F.: Correctness by Construction: Towards Verification in Hierarchical System Development. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 163–180. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Majster-Cederbaum, M., Wu, J.: Action Refinement for True Concurrent Real Time. In: Proc. ICECCS 2001, pp. 58–68. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  24. 24.
    Majster-Cederbaum, M., Wu, J.: Towards Action Refinement for True Concurrent Real-Time. Acta Informatica 39 (2003) (to appear)Google Scholar
  25. 25.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  26. 26.
    Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models - An Algorithmic Approach. The Johns Hopkins University Press (1981)Google Scholar
  27. 27.
    Nicollin, X., Sifakis, J.: An Overview and Synthesis on Timed Process Algebra. In: Real-Time: Theory in Practice. LNCS, vol. 660, pp. 526–548 (1992)Google Scholar
  28. 28.
    Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (1991)Google Scholar
  29. 29.
    Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  30. 30.
    Sahner, R.A., Trividi, K.S.: Performance and Reliability Analysis Using Direct Acyclic Graphs. IEEE Tran. on Softw. Eng. 13(10), 1105–1114 (1987)CrossRefGoogle Scholar
  31. 31.
    Winskel, G.: An Introduction to Event Structures. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 364–397. Springer, Heidelberg (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Mila Majster-Cederbaum
    • 1
  • Jinzhao Wu
    • 1
    • 2
  1. 1.Fakultät für Mathematik und InformatikUniversität MannheimMannheimGermany
  2. 2.Chengdu Institute of Computer ApplicationsChinese Academy of SciencesChengduChina

Personalised recommendations