Formalising an Integrated Language in PVS

  • Gwen Salaün
  • Christian Attiogbé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2885)


System verification is one of the main topics of interest in formal methods. In this paper, we especially focus on equivalence proofs between abstract specification and more concrete ones. We propose an encoding into PVS of an integrated specification language. This language integrates the CCS process algebra extended to manage algebraic terms written from datatype definitions. Such an integrated language is useful to specify large size systems and to cover the different involved aspects. This encoding makes it possible the use of PVS for verification of nontrivial systems.


Formal Method Integration Process Algebra Algebraic Specifications Embedding PVS Equivalence Proof 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P.D., Sannella, D., Tarlecki, A.: CASL: The Common Algebraic Specification Language. Theoretical Computer Science 286(2), 153–196 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Attiogbé, C., Francheteau, A., Limousin, J., Salaün, G.: ISA, a Tool for Integrated Specifications Animation, Available at
  3. 3.
    Basten, T., Hooman, J.: Process Algebra in PVS. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 270–284. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Bodeveix, J.-P., Filali, M.: Type Synthesis in B and the Translation of B to PVS. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 350–369. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bodeveix, J.-P., Filali, M., Muñoz, C.: A Formalization of the B Method in Coq and PVS. In: Proc. of the B Users Group Meeting – Applying B in an industrial context: Tools, Lessons nd Techniques (FM 1999), pp. 32–48. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Bolognesi, T., Brinksma, E.: Introduction to the ISO Specification Language LOTOS. In: van Eijk, P.H.J., Vissers, C.A., Diaz, M. (eds.) The Formal Description Technique LOTOS, pp. 23–73. Elsevier Science Publishers North-Holland (1989)Google Scholar
  7. 7.
    Boulton, R., Gordon, A., Gordon, M.J.C., Herbert, J., van Tassel, J.: Experience with Embedding Hardware Description Languages in HOL. In: Proc. of the International Conference on Theorem Provers in Circuit Design: Theory, Practice and Experience, The Netherlands. IFIP TC10/WG 10.2, pp. 129–156. North-Holland, Amsterdam (1992)Google Scholar
  8. 8.
    Brooke, P.: A Timed Semantics for a Hierarchical Design Notation. PhD Thesis, University of York (1999)Google Scholar
  9. 9.
    Calder, M., Maharaj, S., Shankland, C.: A Modal Logic for Full LOTOS Based on Symbolic Transition Systems. The Computer Journal 45(1), 55–61 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Calder, M., Shankland, C.: A Symbolic Semantics and Bisimulation for Full LOTOS. In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) Proc. of the International Conference on Formal Description Techniques for Networked and Distributed Systems (FORTE 2001), Korea. IFIP Conference Proceedings, vol. 197, pp. 184–200. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  11. 11.
    Cleaveland, R., Li, T., Sims, S.: The Concurrency Workbench of the New Century (Version 1.2). Department of Computer Science, North Carolina State University (2000)Google Scholar
  12. 12.
    Crow, J., Owre, S., Rushby, J., Shankar, N., Srivas, M.: A Tutorial Introduction to PVS. In: Proc. of the Workshop on Industrial-Strength Formal Specification Techniques (WIFT 1995), USA. Computer Science Laboratory, SRI International (1995)Google Scholar
  13. 13.
    Dutertre, B., Schneider, S.: Using a PVS Embedding of CSP to Verify Authentication Protocols. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 121–136. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Fernandez, J.-C., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R., Sighireanu, M.: CADP: A Protocol Validation and Verification Toolbox. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 437–440. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Fischer, C.: CSP-OZ: a Combination of Object-Z and CSP. In: Bowman, H., Derrick, J. (eds.) Proc. of the 2nd IFIP Workshop on Formal Methods for Open Object-Based Distributed Systems (FMOODS 1997), UK, pp. 423–438. Chapman and Hall, Boca Raton (1997)Google Scholar
  16. 16.
    Galloway, J., Stoddart, W.: An Operational Semantics for ZCCS. In: Hinchey, M.G., Liu, S. (eds.) Proc. of the 1st International Conference onf Formal Engineering Methods (ICFEM 1997), Japan, pp. 272–282. IEEE Computer Society Press, Los Alamitos (1997)CrossRefGoogle Scholar
  17. 17.
    Garland, S.J., Guttag, J.V.: A Guide to LP, the Larch Prover. Technical Report, Palo Alto, California (1991)Google Scholar
  18. 18.
    Garland, S.J., Guttag, J.V., Horning, J.J.: An Overview of Larch. In: Lauer, P.E. (ed.) Functional Programming, Concurrency, Simulation and Automated Reasoning. LNCS, vol. 693, pp. 329–348. Springer, Heidelberg (1993)Google Scholar
  19. 19.
    Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  20. 20.
    Gravell, A.M., Pratten, C.H.: Embedding a Formal Notation: Experiences of Automating the Embedding of Z in the Higher Order Logics of PVS and HOL. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 73–84. Springer, Heidelberg (1998)Google Scholar
  21. 21.
    Ingólfsdóttir, A., Lin, H.: A Symbolic Approach to Value-Passing Processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 427–478. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  22. 22.
    ISO. LOTOS: a Formal Description Technique based on the Temporal Ordering of Observational Behaviour. Technical Report 8807, International Standards Organisation (1989)Google Scholar
  23. 23.
    Hennessy, M., Milner, R.: Algebraic Laws for Non-Determinism and Concurrency. Journal of the ACM 32, 137–161 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Maharaj, S.: A PVS Theory of Symbolic Transition Systems. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 255–266. Springer, Heidelberg (2001)Google Scholar
  25. 25.
    Mahony, B., Dong, J.S.: Blending Object-Z and Timed CSP: An Introduction to TCOZ. In: Proc. of the International Conference on Software Engineering (ICSE 1998), Japan, pp. 95–104. IEEE Computer Society Press / ACM Press (1998)Google Scholar
  26. 26.
    Melham, T.F.: A Mechanized Theory of the π-calculus in HOL. Nordic Journal of Computing 1(1), 50–76 (1995)MathSciNetGoogle Scholar
  27. 27.
    Milner, R.: Communication and Concurrency. International Series in Computer Science. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  28. 28.
    Muñoz, C., Rushby, J.: Structural Embeddings: Mechanization with Method. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 452–471. Springer, Heidelberg (1999)Google Scholar
  29. 29.
    Nesi, M.: Formalising a Value-Passing Calculus in HOL. Formal Aspects of Computing 11(2), 160–199 (1999)zbMATHCrossRefGoogle Scholar
  30. 30.
    Nipkow, T., Paulson, L.C.: Isabelle-91. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 673–676. Springer, Heidelberg (1992)Google Scholar
  31. 31.
    Pratten, C.H.: An Introduction to Proving AMN Specifications with PVS and the AMNPROOF Tool. In: Habrias, H. (ed.) Proc. of Z Twenty Years on - What is its Future, France, pp. 149–165 (1995)Google Scholar
  32. 32.
    Salaün, G., Allemand, M., Attiogbé, C.: Formal Framework for a Generic Combination of a Process Algebra with an Algebraic Specification Language: an Overview. In: Proc. of the 8th Asia-Pacific Software Engineering Conference (APSEC 2001), Macau, pp. 299–302. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  33. 33.
    Salaün, G., Allemand, M., Attiogbé, C.: A Method to Combine any Process Algebra with an Algebraic Specification Language: the π-Calculus Example. In: Proc. of the 26th Annual International Computer Software and Applications Conference (COMPSAC 2002), England, pp. 385–390. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  34. 34.
    Salaün, G., Allemand, M., Attiogbé, C.: Specification of an Access Control System with a Formalism Combining CCS and CASL. In: Proc. of the 7th International Workshop on Formal Methods for Parallel Programming: Theory and Applications (FMPPTA 2002). IEEE Computer Society Press, USA (2002)Google Scholar
  35. 35.
    Salaün, G., Attiogbé, C., Allemand, M.: Verification of Integrated Specifications using PVS. Technical Report 03.02, University of Nantes (February 2003), Available at
  36. 36.
    Treharne, H., Schneider, S.: Using a Process Algebra to Control B OPERATIONS. In: Araki, K., Galloway, A., Taguchi, K. (eds.) Proc. of the 1st International Conference on Integrated Formal Methods (IFM 1999), UK, pp. 437–457. Springer, Heidelberg (1999)Google Scholar
  37. 37.
    van de Pol, J., Hooman, J., de Jong, E.: Modular Formal Specification of Data and Behaviour. In: Araki, K., Galloway, A., Taguchi, K. (eds.) Proc. of the 1st Conference on Integrated Formal Methods (IFM 1999), UK, pp. 109–128. Springer, Heidelberg (1999)Google Scholar
  38. 38.
    Woodcock, J., Cavalcanti, A.: The Semantics of Circus. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 184–203. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gwen Salaün
    • 1
  • Christian Attiogbé
    • 1
  1. 1.IRIN, Université de NantesNantes Cedex 3France

Personalised recommendations