A Logical Reconstruction of Reachability

  • Tatiana Rybina
  • Andrei Voronkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2890)

Abstract

In this paper we discuss reachability analysis for infinite-state systems. Infinite-state systems are formalized using transition systems over a first-order structure. We establish a common ground relating a large class of algorithms by analyzing the connections between the symbolic representation of transition systems and formulas used in various reachability algorithms. Our main results are related to the so-called guarded assignment systems.

Keywords

theoretical foundations model theory infinite-state systems reachability analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of programs with well quasi-ordered domains. Information and Computation 160(1-2), 109–127 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abdulla, P.A., Jonsson, B.: Ensuring completeness of symbolic verification methods for infinite-state systems. Theoretical Computer Science 256, 145–167 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bjørner, N.S.: Integrating Decision Procedures for Temporal Verification. PhD thesis, Computer Science Department, Stanford University (1998)Google Scholar
  4. 4.
    Bjørner, N.S.: Reactive verification with queues. In: ARO/ONR/NSF/DARPA Workshop on Engineering Automation for Computer-Based Systems, Carmel, CA, pp. 1–8 (1998)Google Scholar
  5. 5.
    Bultan, T., Gerber, R., Pugh, W.: Model-checking concurrent systems with unbounded integer variables: symbolic representations, approximations, and experimental results. ACM Transactions on Programming Languages and Systems 21(4), 747–789 (1999)CrossRefGoogle Scholar
  6. 6.
    Delzanno, G.: Automatic verification of parametrized cache coherence protocols. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Delzanno, G., Podelski, A.: Constraint-based deductive model checking. International Journal on Software Tools for Technology Transfer 3(3), 250–270 (2001)MATHGoogle Scholar
  8. 8.
    Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Science of Computer Programming 2(3), 241–266 (1982)MATHCrossRefGoogle Scholar
  9. 9.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), Trento, Italy, 1999, pp. 352–359. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  10. 10.
    Henzinger, T.A., Majumdar, R.: A classification of symbolic state transition systems. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 13–34. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Kanellakis, P., Kuper, G.M., Revesz, P.Z.: Constraint query languages. Journal of Computer and System Sciences 51, 26–52 (1995)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. Theoretical Computer Science 256(1-2), 93–112 (2001)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kupferman, O., Vardi, M.: Model checking of safety properties. Formal Methods in System Design 19(3), 291–314 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of linear vector fields. Journal of Symbolic Computations 32(3), 231–253 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Podelski, A.: Model checking as constraint solving. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 22–37. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Pugh, W.: Counting solutions to Presburger formulas: how and why. ACM SIGPLAN Notices 29(6), 121–134 (1994); Proceedings of the ACM SIGPLAN 1994 Conference on Programming Languages Design and Implementation (PLDI)CrossRefGoogle Scholar
  17. 17.
    Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in Cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)Google Scholar
  18. 18.
    Rybina, T., Voronkov, A.: Using canonical representations of solutions to speed up infinite-state model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 386–400. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Warren, D.S.: Memoing for logic programs. Communications of the ACM 35(3), 93–111 (1992)CrossRefGoogle Scholar
  20. 20.
    Yavuz-Kahveci, T., Tuncer, M., Bultan, T.: A library for composite symbolic representations. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 52–66. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tatiana Rybina
    • 1
  • Andrei Voronkov
    • 1
  1. 1.University of Manchester 

Personalised recommendations