Applying Artificial Intelligence to Clinical Guidelines: The GLARE Approach

  • Paolo Terenziani
  • Stefania Montani
  • Alessio Bottrighi
  • Mauro Torchio
  • Gianpaolo Molino
  • Luca Anselma
  • Gianluca Correndo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2829)


In this paper, we present GLARE, a domain-independent system for acquiring, representing and executing clinical guidelines. GLARE is characterized by the adoption of Artificial Intelligence (AI) techniques at different levels in the definition and implementation of the system. First of all, a high-level and user-friendly knowledge representation language has been designed, providing a set of representation primitives. Second, a user-friendly acquisition tool has been designed and implemented, on the basis of the knowledge representation formalism. The acquisition tool provides various forms of help for the expert physicians, including different levels of syntactic and semantic tests in order to check the “well-formedness” of the guidelines being acquired. Third, a tool for executing guidelines on a specific patient has been made available. The execution module provides a hypothetical reasoning facility, to support physicians in the comparison of alternative diagnostic and/or therapeutic strategies. Moreover, advanced and extended AI techniques for temporal reasoning and temporal consistency checking are used both in the acquisition and in the execution phase. The GLARE approach has been successfully tested on clinical guidelines in different domains, including bladder cancer, reflux esophagitis, and heart failure.


Clinical Guideline Temporal Constraint Composite Action Temporal Reasoning Expert Physician 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. In: Brachman, R.J., Levesque, H.J., Reiter, R. (eds.) Knowledge Representation, pp. 61–95. MIT Press, London (1991)Google Scholar
  2. 2.
    Fridsma, D.B.(Guest Ed.): Workflow management and clinical guidelines. Journal of the American Medical Informatics Association 1(22), 1–80 (2001) (special issue)Google Scholar
  3. 3.
    Van Eynde, F.: Iteration, habituality and verb form semantics. In: Proc. of 3rd Conference of European Chapter of the Association for Computational Linguistics, pp. 270–277 (1987)Google Scholar
  4. 4.
    Fox, J., Johns, N., Rahmanzadeh, A., Thomson, R.: Disseminating medical knowledge: the proforma approach. Artificial Intelligence in Medicine 14(1- 2), 157–182 (1998)CrossRefGoogle Scholar
  5. 5.
    Gordon, C.: Practice guidelines and healthcare telematics: towards an alliance. In: Gordon, C., Christensen, J.P. (eds.) Health Telematics for Clinical Guidelines and Protocols, pp. 3–15. IOS Press, Amsterdam (1995)Google Scholar
  6. 6.
    Gordon, C., Christensen, J.P. (eds.): Health Telematics for Clinical Guidelines and Protocols. IOS Press, Amsterdam (1995)Google Scholar
  7. 7.
    Grimshaw, J.M., Russel, I.T.: Effect of clinical guidelines on medical practice: a systematic review of rigorous evaluation. Lancet 342, 1317–1322 (1993)CrossRefGoogle Scholar
  8. 8.
    Molino, G.: From clinical guidelines to decision support. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J.C. (eds.) AIMDM 1999. LNCS (LNAI), vol. 1620, pp. 3–12. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Musen, M.A., Carlson, C.W., Fagan, L.M., Deresinski, S.C., Shortliffe, E.H.: Automated support for community-based clinical research. In: Proc. 16th Annual Symposium on Computer Applications in Medical Care, pp. 719–723 (1992)Google Scholar
  10. 10.
    Musen, M.A., Tu, S.W., Das, A.K., Shahar, Y.: Eon: a component-based approach to automation of protocol-directed therapy. Journal of the American Medical Informatics Association 6(3), 367–388 (1996)CrossRefGoogle Scholar
  11. 11.
    Peleg, M., Boxawala, A.A., et al.: Glif3: The evolution of a guideline representation format. In: Proc. AMIA 2000, pp. 645–649 (2000)Google Scholar
  12. 12.
    Purves, I.: Computerised guidelines in primary health care: Reflections and implications. In: Gordon, C., Christensen, J.P. (eds.) Health Telematics for Clinical Guidelines and Protocols, pp. 57–74. IOS Press, Amsterdam (1995)Google Scholar
  13. 13.
    Quaglini, S., Dazzi, L., Gatti, L., Stefanelli, M., Fassino, C., Tondini, C.: Supporting tools for guideline development and dissemination. Artificial Intelligence in Medicine 2(14), 119–137 (1998)CrossRefGoogle Scholar
  14. 14.
    Quaglini, S., Stefanelli, M., Cavallini, A., Miceli, G., Fassino, C., Mossa, C.: Guideline-based careflow systems. Artificial Intelligence in Medicine 1(20), 5–22 (2000)CrossRefGoogle Scholar
  15. 15.
    Shahar, Y., Mirksch, S., Johnson, P.: The asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in Medicine 14(1-2), 29–51 (1998)CrossRefGoogle Scholar
  16. 16.
    Shiffman, R.N., Karras, B.T., Agrawal, A., Chen, R., Menco, L., Nath, S.: Gem: a proposal for a more comprehensive guideline document model using xml. Journal of the American Medical Informatics Association 5(7), 488–498 (2000)CrossRefGoogle Scholar
  17. 17.
    Terenziani, P., Anselma, L.: Towards a temporal reasoning approach dealing with instance-of, part-of, and periodicity. In: Proc. TIME 2003. IEEE Press, Los Alamitos (2003) (accepted for publication) Google Scholar
  18. 18.
    Terenziani, P., Carlini, C., Montani, S.: Towards a comprehensive treatment of temporal constraints in clinical guidelines. In: Proc. TIME 2002, pp. 20–27. IEEE Press, Los Alamitos (2002)Google Scholar
  19. 19.
    Terenziani, P., Mastromonaco, F., Molino, G., Torchio, M.: Executing clinical guidelines: temporal issues. In: Proc. AMIA 2000, pp. 848–852 (2000)Google Scholar
  20. 20.
    Terenziani, P., Molino, G., Torchio, M.: A modular approach for representing and executing clinical guidelines. Artificial Intelligence in Medicine 23(3), 249–276 (2001)CrossRefGoogle Scholar
  21. 21.
    Terenziani, P., Montani, S., Bottrighi, A., Molino, G., Torchio, M.: Supporting physicians in taking decisions in clinical guidelines: the glare’s ”what if” facility. Journal of the American Medical Informatics Association, Proc. Annual Fall Symposium (2002)Google Scholar
  22. 22.
    Tu, S.W., Kahn, M.G., Musen, M.G., Ferguson, J.K., Shortliffe, E.H., Fagan, L.M.: Episodic skeletal-plan refinement on temporal data. Comm. ACM 32(12), 1439–1455 (1989)CrossRefGoogle Scholar
  23. 23.
    Vila, L.: A survey on temporal reasoning in artificial intelligence. AI Communications 1(7), 4–28 (1994)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Paolo Terenziani
    • 1
  • Stefania Montani
    • 1
  • Alessio Bottrighi
    • 1
  • Mauro Torchio
    • 2
  • Gianpaolo Molino
    • 2
  • Luca Anselma
    • 3
  • Gianluca Correndo
    • 3
  1. 1.DI, Univ. Piemonte Orientale “A. Avogadro”AlessandriaItaly
  2. 2.Lab. Informatica ClinicaTorinoItaly
  3. 3.Dipartimento di InformaticaUniversità di TorinoTorinoItaly

Personalised recommendations