Abstract.

We propose to regard a diagnostic system as an ordered logic theory, i.e. a partially ordered set of clauses where smaller rules carry more preference. This view leads to a hierarchy of the form \(\textit{observations} < \textit{system description} < \textit{fault model}\), between the various knowledge sources. It turns out that the semantics for ordered logic programming nicely fits this intuition: if the observations contradict the normal system behavior, then the semantics will provide an explanation from the fault rules. The above model can be refined, without adding additional machinery, to support e.g. problems where there is a clear preference among possible explanations or where the system model itself has a complex structure. Interestingly, these extensions do not increase the complexity of the relevance or necessity decision problems. Finally, the mapping to ordered logic programs also provides a convenient implementation vehicle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artificial Intelligence 109(1-2), 297–356 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Buccafurri, F., Faber, W., Leone, N.: Disjunctive logic programs with inheritance. In: De Schreye, D. (ed.) Logic Programming: The 1999 International Conference, Las Cruces, New Mexico, December 1999, pp. 79–93. MIT Press, Cambridge (1999)Google Scholar
  3. 3.
    Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagnosis. Computational Intelligence 7(3), 133–141 (1991)CrossRefGoogle Scholar
  4. 4.
    Cox, P.T., Pietrzykowski, T.: General diagnosis by abductive inference. In: Proceedings of the IEEE Symposium on Logic Programming, pp. 183–189 (1987)Google Scholar
  5. 5.
    De Kleer, J.: Local methods for localizing faults in electronic circuits. MIT AI Memo (394)Google Scholar
  6. 6.
    De Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and systems. Artificial Intelligence 52, 197–222 (1992)Google Scholar
  7. 7.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv system. AI Communications 12(1-2), 99–111 (1999)MathSciNetGoogle Scholar
  8. 8.
    Eiter, T., Gottlob, G.: The complexity of logic-based abduction. Journal of the Association for Computing Machinery 42(1), 3–42 (1995)MATHMathSciNetGoogle Scholar
  9. 9.
    Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: Semantics and complexity. Theoretical Computer Science 189(1-2), 129–177 (1997)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eiter, T., Gottlob, G., Leone, N.: Semantics and complexity for abduction from default logic. Artificial Intelligence 90(1-2), 177–222 (1997)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In: Proceedings of the 6th International Conference on Logic Programming, pp. 234–254. MIT Press, Cambridge (1989)Google Scholar
  12. 12.
    Friedrich, G., Gottlob, G., Nejdl, W.: Hypothesis classification, abductive diagnosis and therapy. In: Gottlob, G., Nejdl, W. (eds.) Expert Systems in Engineering. LNCS, vol. 462, pp. 69–78. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Gelfond, M.: Epistemic approach to formalization of commonsense reasoning. Technical report, University of Texas at El Paso, Technical Report TR-91-2 (1991)Google Scholar
  14. 14.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, August 1988, pp. 1070–1080. The MIT Press, Cambridge (1988)Google Scholar
  15. 15.
    Inoue, K., Sakama, C.: Transforming abductive logic programs to disjunctive programs. In: Proceedings of the 10th International Conference on Logic Programming, pp. 335–353. MIT Press, Cambridge (1993)Google Scholar
  16. 16.
    Inoue, K., Sakama, C.: A fixpoint characterization of abductive logic programs. Journal of Logic Programming 27(2), 107–136 (1996)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. Journal of Logic and Computation 2(6), 719–770 (1992)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Laenens, E., Vermeir, D.: Assumption-free semantics for ordered logic programs: On the relationship between well-founded and stable partial models. Journal of Logic and Computation 2(2), 133–172 (1992)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lifschitz, V.: Answer set programming and plan generation. Journal of Artificial Intelligence 138(1-2), 39–54 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Macartney, F.J.: Diagnostic logic. Logic in Medicine (1988)Google Scholar
  21. 21.
    Peng, Y., Reggia, J.: Abductive inference models for diagnostic problem solving. Symbolic Computation - Artificial Intelligence (1990)Google Scholar
  22. 22.
    Poole, D.: Explanation and prediction: An architecture for default and abductive reasoning. Computational Intelligence 5(1), 97–110 (1989)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Preist, C., Eshghi, K., Bertolino, B.: Consistency-based and abductive diagnosis as generalized stable models. Annals of Mathematics and Artificial Intelligence 11, 51–74 (1994)MATHCrossRefGoogle Scholar
  24. 24.
    Reggia, J.A., Nau, D.S., Wang, Y.: Diagnostic expert systems based on a set covering model. International Journal of Man Machine Studies (19), 437–460 (1983)Google Scholar
  25. 25.
    Reiter, R.: Atheory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sakama, C., Inoue, K.: On the equivalence between disjunctive and abductive logic programs. In: Van Hentenryck, P. (ed.) Logic Programming, Proceedings of the Eleventh International Conference on Logic Programming, Santa Margherita Ligure, Italy, June 1994, pp. 489–503. MIT Press, Cambridge (1994)Google Scholar
  27. 27.
    Sakama, C., Inoue, K.: Representing priorities in logic programs. In: Maher, M.J. (ed.) Proceedings of the 1996 Joint International Conference and Syposium on Logic Programming, Bonn, September 1996, pp. 82–96. MIT Press, Cambridge (1996)Google Scholar
  28. 28.
    Sakama, C., Inoue, K.: Abductive logic programming and disjunctive logic programming: their relationship and transferability. The Journal of Logic Programming 44(1-3), 71–96 (2000)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Shortliffe, E.H.: Computer-based medical consultations: Mycin (1976)Google Scholar
  30. 30.
    van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. Journal of the Association for Computing Machinery 23(4), 733–742 (1976)MATHMathSciNetGoogle Scholar
  31. 31.
    Van Nieuwenborgh, D., Vermeir, D.: Order and negation as failure (accepted)Google Scholar
  32. 32.
    Van Nieuwenborgh, D., Vermeir, D.: Ordered diagnosis. Technical report, Vrije Universiteit Brussel, Dept. of Computer Science (2003)Google Scholar
  33. 33.
    Van Nieuwenborgh, D., Vermeir, D.: Preferred answer sets for ordered logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 432–443. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Wang, K., Zhou, L., Lin, F.: Alternating fixpoint theory for logic programs with priority. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 164–178. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Davy Van Nieuwenborgh
    • 1
  • Dirk Vermeir
    • 1
  1. 1.Dept. of Computer ScienceVrije Universiteit Brussel, VUB 

Personalised recommendations