Video Denoising Using Multiple Class Averaging with Multiresolution

  • Vladimir Zlokolica
  • Aleksandra Pizurica
  • Wilfried Philips
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2849)


This paper presents a non-linear technique for noise reduction in video that is suitable for real-time processing. The proposed algorithm automatically adapts to detected levels of detail and motion, but also to the noise level, provided it is short-tail noise, such as Gaussian noise. It uses a one-level wavelet decomposition, and performs independent processing in four different bands in the wavelet domain. The non-decimated transform is used because it leads to better results for image/video denoising than the decimated transform. The results show that from both a PSNR and a visual quality, the proposed filter outperforms the other state of the art filters for different image sequences.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jostschulte, K., Amer, A., Schu, M., Schroder, H.: Perception adaptive temporal tv-noise reduction using contour preserving prefilter techniques. IEEE Trans. on Consumer Electronics 44(3), 1091–1096 (1998)CrossRefGoogle Scholar
  2. 2.
    De Haan, G., Kwaaitaal-Spassova, T.G., Larragy, M.M., Ojo, O.A., Schut-ten, R.J.: Television noise reduction ic. IEEE Trans. on Consumer Electronics 44(1), 143–153 (1998)CrossRefGoogle Scholar
  3. 3.
    De Haan, G., Kwaaitaal-Spassova, T.G., Larragy, M.M., Ojo, O.A.: Memory integrated noise reduction ic for television. IEEE Trans. on Consumer Electronics 42(2), 175–180 (1996)CrossRefGoogle Scholar
  4. 4.
    Cocchia, F., Carrato, S., Ramponi, G.: Design and real-time implementation of a 3-D rational filter for edge preserving smoothing. IEEE Transactions on Consumer Electronics 43(4), 1291–1300 (1997)CrossRefGoogle Scholar
  5. 5.
    de Haan, G.: Ic for motion-compensated de-interlacing, noise reduction and picture rate conversion. IEEE Trans. on Cosumers Electronics 45(3), 617–623 (1999)CrossRefGoogle Scholar
  6. 6.
    Rajagopalan, R.: Synthesizing processed video by filtering temporal relationships. IEEE Trans. on Image Processing 11(1), 26–36 (2002)CrossRefGoogle Scholar
  7. 7.
    Mehmet, K.O., Ibrahim, S., Murat, T.: Adaptive motion-compensated filtering of noisy image sequences. IEEE Trans. on Circuits and Systems for Video Technology 3(4), 277–290 (1993)CrossRefGoogle Scholar
  8. 8.
    Dugad, D., Ahua, N.: Noise reduction in video by joint spatial and temporal processing. Submitted for review for IEEE Trans. CVST (2001)Google Scholar
  9. 9.
    Bellers, E.B., De Haan, G.: De-Interlacing:A Key Technology for Scan Rate Conversion. Elsevier Science B.V., Amsterdam (2000)Google Scholar
  10. 10.
    Lee, J.-S.: Digital smoothing and the sigma filter. Computer Vision Graphics and Image Processing 24, 255–269 (1983)CrossRefGoogle Scholar
  11. 11.
    Ccir recommendation 421-1, annex iii (1967)Google Scholar
  12. 12.
    Mallat, S.: A wavelet tour of signal processing, 2nd edn. Academic Press, Oval Road (1999)MATHGoogle Scholar
  13. 13.
    Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Trans. Pattern Analysis and Machine Intelligence 14(7), 710–732 (1992)CrossRefGoogle Scholar
  14. 14.
    Zlokolica, V., Philips, W., Van De Ville, D.: A new non-linear filter for video processing. In: IEEE Benelux Signal Processing Symposium, March 2002, pp. 221–224 (2002)Google Scholar
  15. 15.
    Zlokolica, V., Philips, W.: Motion- detail adaptive k-nn filter video denoising, in Report (2002),

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Vladimir Zlokolica
    • 1
  • Aleksandra Pizurica
    • 1
  • Wilfried Philips
    • 1
  1. 1.IPI, TELINUniversity of GhentGhentBelgium

Personalised recommendations