Minimum Recombinant Haplotype Configuration on Tree Pedigrees

  • Koichiro Doi
  • Jing Li
  • Tao Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2812)

Abstract

We study the problem of reconstructing haplotype configurations from genotypes on pedigree data under the Mendelian law of inheritance and the minimum recombination principle, which is very important for the construction of haplotype maps and genetic linkage/association analysis. Li and Jiang [9,10] recently proved that the Minimum Recombinant Haplotype Configuration (MRHC) problem is NP-hard, even if the number of marker loci is 2. However, the proof uses pedigrees that contain complex mating loop structures that are not common in practice. The complexity of MRHC in the loopless case was left as an open problem. In this paper, we show that loopless MRHC is NP-hard. We also present two dynamic programming algorithms that can be useful for solving loopless MRHC (and general MRHC) in practice. The first algorithm performs dynamic programming on the members of the input pedigree and is efficient when the number of marker loci is bounded by a small constant. It takes advantage of the tree structure in a loopless pedigree. The second algorithm performs dynamic programming on the marker loci and is efficient when the number of the members of the input pedigree is small. This algorithm also works for the general MRHC problem. We have implemented both algorithms and applied the first one to both simulated and real data. Our preliminary experiments demonstrate that the algorithm is often able to solve MRHC efficiently in practice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Hansen, J.A., Ingólfsdóttir, A., Johnsen, J., Knudsen, J.: The complexity of checking consistency of pedigree information and related problems. Manuscript (2003)Google Scholar
  2. 2.
    Daly, M., Rioux, J., Schaffner, S., Hudson, T., Lander, E.: High-resolution haplotype structure in the human genome. Nat Genet 29(2), 229–232 (2001)CrossRefGoogle Scholar
  3. 3.
    Douglas, J.A., Boehnke, M., Gillanders, E., Trent, J., Gruber, S.: Experimentally-derived haplotypes substantially increase the efficiency of linkage disequilibrium studies. Nat Genet 28(4), 361–364 (2001)CrossRefGoogle Scholar
  4. 4.
    Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12, 921–927 (1995)Google Scholar
  5. 5.
    Gabriel, S.B., et al.: The structure of haplotype blocks in the human genome. Science 296(5576), 2225–2229 (2002)CrossRefGoogle Scholar
  6. 6.
    Gary, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1, 237–267 (1976)CrossRefGoogle Scholar
  7. 7.
    Gusfield, D.: Haplotyping as perfect phylogeny: conceptual framework and efficient solutions. In: Proc. RECOMB, pp. 166–175 (2002)Google Scholar
  8. 8.
    Helmuth, L.: Genome research: Map of the human genome 3. 0. Science 293(5530), 583–585 (2001)CrossRefGoogle Scholar
  9. 9.
    Li, J., Jiang, T.: Efficient rule-based haplotyping algorithms for pedigree data. In: Proc. RECOMB 2003, pp. 197–206 (2003)Google Scholar
  10. 10.
    Li, J., Jiang, T.: Efficient inference of haplotypes from genotypes on a pedigree. J. Bioinfo. and Comp. Biol. 1(1), 41–69 (2003)CrossRefGoogle Scholar
  11. 11.
    Lam, J.C., Roeder, K., Devlin, B.: Haplotype fine mapping by evolutionary trees. Am J Hum Genet 66(2), 659–673 (2000)CrossRefGoogle Scholar
  12. 12.
    Lin, S., Speed, T.P.: An algorithm for haplotype analysis. J Comput Biol 4(4), 535–546 (1997)CrossRefGoogle Scholar
  13. 13.
    Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Briefings in Bioinformatics 3(1), 23–31 (2002)CrossRefGoogle Scholar
  14. 14.
    Liu, J.S., Sabatti, C., Teng, J., Keats, B.J., Risch, N.: Bayesian analysis of haplotypes for linkage disequilibrium mapping. Genome Res 11(10), 1716–1724 (2001)CrossRefGoogle Scholar
  15. 15.
    Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotyping interface for multiple linked single-nucleotide polymorphisms. Am J Hum Genet 70(1), 157–169 (2002)CrossRefGoogle Scholar
  16. 16.
    O’Connell, J.R.: Zero-recombinant haplotyping: applications to fine mapping using snps. Genet Epidemiol 19(Suppl. 1), S64–S70 (2000)Google Scholar
  17. 17.
    Qian, D., Beckman, L.: Minimum-recombinant haplotyping in pedigrees. Am J Hum Genet 70(6), 1434–1445 (2002)CrossRefGoogle Scholar
  18. 18.
    Seltman, H., Roeder, K., Delvin, B.: Transmission/disequilibrium test meets measured haplotype analysis: family-based association analysis guided by evolution of haplotypes. Am J Hum Genet 68(5), 1250–1263 (2001)CrossRefGoogle Scholar
  19. 19.
    Service, S.K., Lang, D.W., Freimer, N.B., Sandkuijl, L.A.: Linkage-disequilibrium mapping of disease genes by reconstruction of ancestral haplotypes in founder populations. Am J Hum Genet 64(6), 1728–1738 (1999)CrossRefGoogle Scholar
  20. 20.
    Stephens, M., Smith, N.J., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4), 978–989 (2001)CrossRefGoogle Scholar
  21. 21.
    Tapadar, P., Ghosh, S., Majumder, P.P.: Haplotyping in pedigrees via a genetic algorithm. Hum Hered 50(1), 43–56 (2000)CrossRefGoogle Scholar
  22. 22.
    Thomas, A., Gutin, A., Abkevich, V., Bansal, A.: Multilocus linkage analysis by blocked gibbs sampling. Stat Comput, 259–269 (2000)Google Scholar
  23. 23.
    Toivonen, H.T., Onkamo, P., Vasko, K., Ollikainen, V., Sevon, P., Mannila, H., Herr, M., Kere, J.: Data mining applied to linkage disequilibrium mapping. Am J Hum Genet 67(1), 133–145 (2000)CrossRefGoogle Scholar
  24. 24.
    Wijsman, E.M.: A deductive method of haplotype analysis in pedigrees. Am J Hum Genet 41(3), 356–373 (1987)Google Scholar
  25. 25.
    Zhang, S., Zhang, K., Li, J., Zhao, H.: On a family-based haplotype pattern mining method for linkage disequilibrium mapping. Pac Symp Biocomput, 100–111 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Koichiro Doi
    • 1
  • Jing Li
    • 2
  • Tao Jiang
    • 2
  1. 1.Department of Computer Science, Graduate School of Information Science and TechnologyUniversity of TokyoTokyoJapan
  2. 2.Department of Computer Science and EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations