Consensus Networks: A Method for Visualising Incompatibilities in Collections of Trees

  • Barbara Holland
  • Vincent Moulton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2812)

Abstract

We present a method for summarising collections of phylogenetic trees that extends the notion of consensus trees. Each branch in a phylogenetic tree corresponds to a bipartition or split of the set of taxa labelling its leaves. Given a collection of phylogenetic trees, each labelled by the same set of taxa, all those splits that appear in more than a predefined threshold proportion of the trees are displayed using a median network. The complexity of this network is bounded as a function of the threshold proportion. We demonstrate the method for a collection of 5000 trees resulting from a Monte Carlo Markov Chain analysis of 37 mammal mitochondrial genomes, and also for a collection of 80 equally parsimonious trees resulting from a heuristic search on 53 human mitochondrial sequences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amenta, N., Klingner, J.: Case Study: Visualizing Sets of Evolutionary Trees. In: 8th IEEE Symposium on Information Visualization, InfoVIs 2002 (2002)Google Scholar
  2. 2.
    Bandelt, H.-J., Dress, A.: Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution 1(3), 242–252 (1992)CrossRefGoogle Scholar
  3. 3.
    Bandelt, H.-J.: Phylogenetic Networks. Verhandl. Naturwiss. Vereins Hamburg (NF) 34, 51–71 (1994)Google Scholar
  4. 4.
    Bandelt, H.-J., Forster, P., Sykes, B.C., Richards, M.B.: Mitochondrial portraits of human populations using median networks. Genetics 14, 743–753 (1995)Google Scholar
  5. 5.
    Bandelt, H.-J., Huber, K.T., Moulton, V.: Quasi-median graphs from sets of partitions. Discrete Applied Mathematics 122, 23–35 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz, M., Lapointe, F.J., McMorris, F., Mirkin, B., Roberts, F. (eds.) Bioconsensus. DIMACSAMS. 2003, pp. 1–21 (2003)Google Scholar
  7. 7.
    Bryant, D., Moulton, V.: NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. In: the proceedings of WABI, pp. 375–391 (2002)Google Scholar
  8. 8.
    Dress, A., Klucznik, M., Koolen, J., Moulton, V.: A note on extremal combinatorics of cyclic split systems. Seminaire Lotharingien de Combinatoire 47 (2001), http://www.mat.univie.ac.at/slc
  9. 9.
    Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)CrossRefGoogle Scholar
  10. 10.
    Hendy, M.D., Steel, M.A., Penny, D., Henderson, I.M.: Families of trees and consensus. In: Bock, H.H. (ed.) Classification and Related Methods of Data Analysis, pp. 355–362. Elsevier Science Publ, North Holland (1988)Google Scholar
  11. 11.
    Huber, K.T., Langton, M., Penny, D., Moulton, V., Hendy, M.: Spectronet: A package for computing spectra and median networks. Applied Bioinformatics 1, 159–161 (2002)Google Scholar
  12. 12.
    Huber, K.T., Moulton, V., Lockhart, P., Dress, A.: Pruned median networks: a technique for reducing the complexity of median networks. Molecular Phylogenetics and Evolution 19, 302–310 (2001)CrossRefGoogle Scholar
  13. 13.
    Huelsenbeck, J.P., Larget, B., Miller, R.E., Ronquist, F.: Potential applications and pitfalls of Bayesian inference of phylogeny. Syst. Biol. 51, 673–688 (2002)CrossRefGoogle Scholar
  14. 14.
    Huelsenbeck, J.P., Ronquist, F.: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001)CrossRefGoogle Scholar
  15. 15.
    Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P.: Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001)CrossRefGoogle Scholar
  16. 16.
    Huson, D.: SplitsTree: a program for analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 (1998), http://bibiserv.techfak.uni-bielefeld.de/intro/seqdept.html CrossRefGoogle Scholar
  17. 17.
    Ingman, M., Kaessmann, H., Paabo, S., Gyllensten, U.: Mitochondrial genome variation and the origin of modern humans. Science 408, 708–713 (2000)Google Scholar
  18. 18.
    Klingner, J.: Visualizing Sets of Evolutionary Trees. The University of Texas at Austin, Department of Computer Sciences. Technical Report CS-TR-01-26 (2001)Google Scholar
  19. 19.
    Lin, Y.-H., McLenachan, P.A., Gore, A.R., Phillips, M.J., Ota, R., Hendy, M.D., Penny, D.: Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Molecular Biology and Evolution 19, 2060–2070 (2002)Google Scholar
  20. 20.
    Lin, Y.-H., Waddell, P.J., Penny, D.: Pika and Vole mitochondrial genomes add support to both rodent monophyly and glires. Gene 294, 119–129 (2002)CrossRefGoogle Scholar
  21. 21.
    Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)MATHGoogle Scholar
  22. 22.
    Swofford, D.L.: PAUP* - Phylogenetic Analysis Using Parsimony (*and other methods) Version 4. Sinauer Associates, Sunderland, Mass. (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Barbara Holland
    • 1
  • Vincent Moulton
    • 2
  1. 1.Allan Wilson Centre for Molecular Ecology and EvolutionMassey UniversityNew Zealand
  2. 2.The Linnaeus Centre for BioinformaticsUppsala UniversityUppsalaSweden

Personalised recommendations