Advertisement

Test Case Generation According to the Binary Search Strategy

  • Sami Beydeda
  • Volker Gruhn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2869)

Abstract

One of the important tasks during software testing is the generation of test cases. Unfortunately, existing approaches to test case generation often have problems limiting their use. A problem of dynamic test case generation approaches, for instance, is that a large number of iterations can be necessary to obtain test cases. This article introduces a formal framework for the application of the well-known search strategy of binary search in path-oriented test case generation and explains the binary search-based test case generation (BINTEST) algorithm.

Keywords

Atomic Function Binary Search Symbolic Execution Innermost Loop Piecewise Monotone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, principles, techniques, and tools. Addison Wesley, Reading (1988)Google Scholar
  2. 2.
    Avritzer, A., Weyuker, E.J.: The automatic generation of load test suites and the assessment of the resulting software. IEEE Transactions on Software Engineering 21(9), 705–716 (1995)CrossRefGoogle Scholar
  3. 3.
    Beydeda, S.: The Self-Testing COTS Components (STECC) Method. PhD thesis, Universität Leipzig, Fakultät für Mathematik und Informatik (2003)Google Scholar
  4. 4.
    Beydeda, S., Gruhn, V.: BINTEST – binary search-based test case generation. In: Computer Software and Applications Conference (COMPSAC). IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  5. 5.
    Beydeda, S., Gruhn, V.: Merging components and testing tools: The self-testing COTS components (STECC) strategy. In: EUROMICRO Conference Component-based Software Engineering Track. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  6. 6.
    Gallagher, M.J., Narasimhan, V.L.: Adtest: A test data generation suite for ada software systems. IEEE Transactions on Software Engineering 23(8), 473–484 (1997)CrossRefGoogle Scholar
  7. 7.
    Korel, B.: Automated software test data generation. IEEE Transactions on Software Engineering 16(8), 870–879 (1990)CrossRefGoogle Scholar
  8. 8.
    Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-data generation using genetic algorithms. Software Testing, Verification and Reliability 9(4), 263–282 (1999)CrossRefGoogle Scholar
  9. 9.
    Ramamoorthy, C., Ho, S., Chen, W.: On the automated generation of program test data. IEEE Transactions on Software Engineering SE-2(4), 293–300 (1976)CrossRefGoogle Scholar
  10. 10.
    Tracey, N., Clark, J., Mander, K.: Automated program flaw finding using simulated annealing. In: SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). Software Engineering Notes, vol. 23, pp. 73–81. ACM Press, New York (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sami Beydeda
    • 1
  • Volker Gruhn
    • 1
  1. 1.Department of Computer Science, Chair of Applied Telematics / e-BusinessUniversity of LeipzigLeipzigGermany

Personalised recommendations