Towards Ontology-Driven Discourse: From Semantic Graphs to Multimedia Presentations

  • Joost Geurts
  • Stefano Bocconi
  • Jacco van Ossenbruggen
  • Lynda Hardman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2870)


Traditionally, research in applying Semantic Web technology to multimedia information systems has focused on using annotations and ontologies to improve the retrieval process. This paper concentrates on improving the presentation of the retrieval results.

First, our approach uses ontological domain knowledge to select and organize the content relevant to the topic the user is interested in. Domain ontologies are valuable in the presentation generation process, because effective presentations are those that succeed in conveying the relevant domain semantics to the user. Explicit discourse and narrative knowledge allows selection of appropriate presentation genres and creation of narrative structures, which are used for conveying these domain relations.

In addition, knowledge of graphic design and media characteristics is essential to transform abstract presentation structures into real multimedia presentations. Design knowledge determines how the semantics and presentation structure are expressed in the multimedia presentation. In traditional Web environments, this type of design knowledge remains implicit, hidden in style sheets and other document transformation code. Our second use of Semantic Web technology is to model design knowledge explicitly, and to enable it to drive the transformations needed to turn annotated media items into structured presentations.


None None Domain Ontology Design Knowledge Document Structure Multimedia Document 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aidministrator Nederland B.V. SeRQL user manual, April 4 (2003),
  2. 2.
    Bateman, J., Kleinz, J., Kamps, T., Reichenberger, K.: Towards Constructive Text, Diagram, and Layout Generation for Information Presentation. Computational Linguistics 27(3), 409–449 (2001), CrossRefGoogle Scholar
  3. 3.
    Boley, H., Tabet, S., Wagner, G.: Design Rationale of RuleML: A Markup Language for Semantic Web Rules. In: Semantic Web Working Symposium (SWWS), Stanford University, California, July 30–August 1 (2001),
  4. 4.
    Bordegoni, M., Faconti, G., Maybury, M., Rist, T., Ruggieri, S., Trahanias, P., Wilson, M.: A Standard Reference Model for Intelligent Multimedia Presentation Systems. Computer Standards & Interfaces 18(6–7), 477–496 (1997), CrossRefGoogle Scholar
  5. 5.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An Architecture for Storing and Querying RDF Data and Schema Information. In: Fensel, D., Hendler, J., Lieberman, H., Wahlster, W. (eds.) Semantics for the WWW. MIT Press, Cambridge (2001)Google Scholar
  6. 6.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002), CrossRefGoogle Scholar
  7. 7.
    Comai, S., Fraternali, P.: A semantic model for specifying data-intensive Web applications using WebML. In: Semantic Web Working Symposium (SWWS), July 30–August 1, Stanford University, California (2001), Google Scholar
  8. 8.
    Dublin Core Community. Dublin Core Element Set, Version 1.1 (1999),
  9. 9.
    Falkovych, K., Sabou, M., Stuckenschmidt, H.: UML for the Semantic Web: Transformation-Based Approaches. In: Omelayenko, B., Klein, M. (eds.) Knowledge Transformation for the Semantic Web, pp. 92–106. IOS Press, Amsterdam (2003), Google Scholar
  10. 10.
    Fernandez, M.F., Florescu, D., Kang, J., Levy, A.Y., Suciu, D.: Overview of Strudel – A Web-Site Management System. Networking and Information Systems Journal 1, 115–124 (1998), Google Scholar
  11. 11.
    Greimas, J.: Structural Semantics: An Attempt at a Method. University of Nebraska Press, Lincoln (1983)Google Scholar
  12. 12.
    Grosso, W., Eriksson, H., Fergerson, R., Gennari, J., Tu, S., Musen, M.: Knowledge Modeling at the Millennium (The Design and Evolution of Protege-2000). Technical Report SMI Report Number: SMI-1999-0801, Stanford Medical Informatics (SMI) (1999)Google Scholar
  13. 13.
    Isakowitz, T., Stohr, E.A., Balasubramanian, P.: RMM: A Methodology for Structured Hypermedia Design. Communications of the ACM 38(8), 34–44 (1995)CrossRefGoogle Scholar
  14. 14.
    Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: A Declarative Query Language for RDF. In: Proceedings of the Eleventh International World Wide Web Conference (WWW 2002), Honolulu, Hawaii, USA, pp. 592–603. ACM Press, New York (2002), CrossRefGoogle Scholar
  15. 15.
    Kim, S., Alani, H., Hall, W., Lewis, P., Millard, D., Shadbolt, N., Weal, M.: Artequakt: Generating Tailored Biographies with Automatically Annotated Fragments from the Web. Presented at the Semantic Authoring, Annotation and Knowledge Markup (SAAKM) 2002 Workshop at the 15th European Conference on Artificial Intelligence (ECAI 2002), Lyon, France (2002)Google Scholar
  16. 16.
    Little, S., Geurts, J., Hunter, J.: Dynamic Generation of Intelligent Multimedia Presentations through Semantic Inferencing. In: Agosti, M., Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 158–189. Springer, Heidelberg (2002), CrossRefGoogle Scholar
  17. 17.
    Mann, W.C., Matthiesen, C.M.I.M., Thompson, S.A.: Rhetorical Structure Theory and Text Analysis. Technical Report ISI/RR-89-242, Information Sciences Institute, University of Southern California (November 1989)Google Scholar
  18. 18.
    McBride, B.: Jena: Implementing the RDF Model and Syntax Specification, see
  19. 19.
    Oldach, M.: Creativity for Graphic Designers. North Light Books, Cincinnati (1995)Google Scholar
  20. 20.
    Rutledge, L., Alberink, M., Brussee, R., Pokraev, S., van Dieten, W., Veenstra, M.: Finding the Story – Broader Applicability of Semantics and Discourse for Hypermedia Generation. In: Proceedings of the 14th ACM conference on Hypertext and Hypermedia, Nottingham, UK, August 26–30 (2003), (to be published)
  21. 21.
    Schmitz, P., Yu, J., Santangeli, P.: Timed Interactive Multimedia Extensions for HTML (HTML+TIME): Extending SMIL into the Web Browser. W3C Note are (September 1998), available at
  22. 22.
    Shum, S.B., Motta, E., Domingue, J.: ScholOnto: an Ontology-Based Digital Library Server for Research Documents and Discourse. International Journal on Digital Libraries 3(3) (August/September 2000),
  23. 23.
    van Ossenbruggen, J., Geurts, J., Cornelissen, F., Rutledge, L., Hardman, L.: Towards Second and Third Generation Web-Based Multimedia. In: The Tenth International World Wide Web Conference, IW3C2, Hong Kong, May 1–5, pp. 479–488. IW3C2, ACM Press (2001),
  24. 24.
    van Ossenbruggen, J., Geurts, J., Hardman, L., Rutledge, L.: Towards a Formatting Vocabulary for Time-based Hypermedia. In: The Twelfth International World Wide Web Conference, Budapest, Hungary, May 20–24, pp. 384–393. IW3C2, ACM Press (2003),
  25. 25.
    Hoschka, P. (ed.): W3C. Synchronized Multimedia Integration Language (SMIL) 1.0 Specification. W3C Recommendation, June 15 (1998),
  26. 26.
    Cohen, A. (ed.): W3C. Synchronized Multimedia Integration Language (SMIL 2.0) Specification. W3C Recommendation, August 7 (2001),
  27. 27.
    Williams, R.: The Non-Designer’s Design Book. Peachpit Press, Berkeley (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Joost Geurts
    • 1
  • Stefano Bocconi
    • 1
  • Jacco van Ossenbruggen
    • 1
  • Lynda Hardman
    • 1
  1. 1.CWIAmsterdamThe Netherlands

Personalised recommendations