Rules and Defeasible Reasoning on the Semantic Web

  • Grigoris Antoniou
  • Gerd Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2876)

Abstract

This paper discusses some issues related to the use of rules for the Semantic Web. We argue that rule formalisms and rule-based technologies have to offer a lot for the Semantic Web. In particular, they allow a simple treatment of defeasible reasoning, which is essential for being able to capture many forms of commonsense policies and specifications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniou, G., Billington, D., Maher, M.J.: On the analysis of regulations using defeasible rules. In: Proc. 32nd Hawaii International Conference on Systems Sciences (1999)Google Scholar
  2. 2.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A flexible framework for defeasible logics. In: Proc. 17th American National Conference on Artificial Intelligence (AAAI 2000), pp. 405–410 (2000)Google Scholar
  3. 3.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation Results for Defeasible Logic. ACM Transactions on Computational Logic 2(2), 255–287 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Antoniou, G.: Nonmonotonic Rule Systems on top of Ontology Layers. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 394–398. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Buchheit, M., Donini, F., Schaerf, A.: Decidable Reasoning in terminological knowledge representation systems. Journal of Artificial Intelligence Research 1, 109–138 (1993)MATHMathSciNetGoogle Scholar
  6. 6.
    Connolly, D., et al.: DAML+OIL. Reference Description (March 2001), http://www.w3.org/TR/daml+oil-reference
  7. 7.
    Dean, M., et al.: OWL Web Ontology Language Reference 1.0, http://www.w3.org/TR/owl-ref/
  8. 8.
    Dumas, M., Governatori, G., ter Hofstede, A., Oaks, P.: A formal approach to negotiating agents development. Electronic Commerce Research and Applications 1(2 ) (2002)Google Scholar
  9. 9.
    Grosof, B., Labrou, Y., Chan, H.: A Declarative Approach to Business Rules in Contracts: Courteous Logic Programs in XML. In: Proc. 1st ACM Conference on Electronic Commerce. ACM, New York (1999)Google Scholar
  10. 10.
    Grosof, B., Poon, T.: Representing Agent Contracts with Exceptions using XML Rules, Ontologies, and Process. In: Proc. Intern. Workshop on Rule Markup Languages for Business Rules on the Semantic Web, Sardinia, Italy, June 14 (2002); in conjunction with the First International Semantic Web ConferenceGoogle Scholar
  11. 11.
    Grosof, B., Horrocks, I.: Description Logic Programs: Combining Logic Programs with Description Logic (unpublished manuscript)Google Scholar
  12. 12.
    Heymanns, S., Vermeir, D.: A Defeasible Ontology Language. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 1033–1046. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pp. 199–204. Morgan Kaufmann, San Francisco (2001)Google Scholar
  14. 14.
    Levy, A., Rousset, M.-C.: CARIN: A Representation Language Combining Horn rules and Description Logics. Artificial Intelligence 104(1-2), 165–209 (1998)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kunen, K.: Negation in Logic Programming. Journal of Logic Programming 4(4), 289–308 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Maher, M.J., Governatori, G.: A Semantic Decomposition of Defeasible Logics. In: Proc. American National Conference on Artificial Intelligence (AAAI 1999), pp. 299–306 (1999)Google Scholar
  17. 17.
    Maher, M.J.: Propositional Defeasible Logic has Linear Complexity. Theory and Practice of Logic Programming 1(6), 691–711 (2001)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Marek, V., Truszczynski, M.: Nonmonotonic Reasoning – Context-Dependent Reasoning. Springer, Heidelberg (1993)Google Scholar
  19. 19.
    Morgenstern, L.: Inheritance Comes of Age: Applying Nonmonotonic Techniques to Problems in Industry. Artificial Intelligence 103, 1–34 (1998)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Nute, D.: Defeasible Logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 353–395. Oxford University Press, Oxford (1994)Google Scholar
  21. 21.
    Prakken, H.: Logical Tools for Modelling Legal Argument: A Study of Defeasible Reasoning in Law. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  22. 22.
    Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 13, 81–132 (1980)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
  24. 24.
    Wagner, G.: Ex contradictione nihil sequitur. In: Proceedings of International Joint Conference on Artificial Intelligence IJCAI 1991. Morgan Kaufmann, San Francisco (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Grigoris Antoniou
    • 1
  • Gerd Wagner
    • 2
  1. 1.Institue of Computer ScienceFORTHGreece
  2. 2.Faculty of Technology ManagementEindhoven University of TechnologyThe Netherlands

Personalised recommendations