A Comprehensive Approach for Multi-channel Image Registration

  • G. K. Rohde
  • S. Pajevic
  • C. Pierpaoli
  • P. J. Basser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2717)

Abstract

We describe a general framework for multi-channel image registration. A new similarity measure for registering two multi-channel images, each with an arbitrary number of channels, is proposed. Results show that image registration performed based on different channels generates different results. In addition, we show that, when available, the inclusion of multi-channel data in the registration procedure helps produce more accurate results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Viola, P., Wells III, W.M.: Alignment by maximization of mutual information. In: Proc. Int. Conf. Computer Vision, Boston, pp. 16–23 (1995)Google Scholar
  2. 2.
    Wells III, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1, 35–51 (1996)CrossRefGoogle Scholar
  3. 3.
    Maes, F., Collignon, A., Vandermeulen, D., Marcha, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16, 187–198 (1997)CrossRefGoogle Scholar
  4. 4.
    Studholme, C., Hill, D.L.J., Hawkes, D.J.: Automated trhee-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Medical Physics 24, 25–35 (1997)CrossRefGoogle Scholar
  5. 5.
    Alexander, D.C., Gee, J.C., Bajcsy, R.: Transformations of and similarity measures for diffusion tensor MRIs. In: Workshop on Biomedical Image Registration, at CAIP (1999)Google Scholar
  6. 6.
    Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial Transformations of Diffusion Tensor Magnetic Resonance Images. IEEE Transactions on Medical Imaging 20, 1131–1139 (2001)CrossRefGoogle Scholar
  7. 7.
    Ruiz-Alzola, J., Westin, C.-F., Warfield, S.K., Alberola, C., Maier, S., Kinikis, R.: Nonrigid registration of 3D tensor medical data. Medical Image Analysis 6, 143–161 (2002)CrossRefGoogle Scholar
  8. 8.
    Guimond, A., Guttmann, C.R.G., Warfield, S.K., Westin, C.-F.: Deformable registration of DT-MRI data based on transformation invariant tensor characteristics. In: Proc. ISBI 2002 (2002)Google Scholar
  9. 9.
    Thirion, J.-P.: Image matching as a diffusion process: an analogy with Maxwell’s daemons. Medical Image Analysis 2, 243–260 (1998)CrossRefGoogle Scholar
  10. 10.
    Boes, J.L., Meyer, C.R.: Multi-variate mutual information for registration. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 606–612. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Kullback, S.: Information Theory and Statistics. Dover Publications, Mineola (1968)Google Scholar
  12. 12.
    Rohde, G.K., Aldroubi, A., Dawant, B.M.: The adaptive bases algorithm for nonrigid image registration. In: Proc. SPIE Medical Imaging, San Diego, USA (2002)Google Scholar
  13. 13.
    Rohde, G.K.: The adaptive grid registration algorithm: a new spline modeling approach for automatic intensity based nonrigid registration. Masters thesis, Dept. Electrical Engineering, Vanderbilt University (2001)Google Scholar
  14. 14.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  15. 15.
    Studholme, C., Cardenas, V.A., Weiner, M.W.: Multiscale image and multiscale deformation of brain anatomy for building average brain atlases. In: Proc. SPIE Medical Imaging, Sand Diego, USA (2001)Google Scholar
  16. 16.
    Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Advances in Computational Mathematics 4, 389–396 (1995)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Schaback, R.: Creating surfaces from scattered data using radial basis functions. In: Mathematical Models for Curves and Surfaces. Vanderbilt University Press, Nashville (1995)Google Scholar
  18. 18.
    Rueckert, D., Clarkson, M.J., Hill, D.L.G., Hawkes, D.J.: Non-rigid registration using higher-order mutual information. In: Proce SPIE Medical Imaging, San Diego (2000)Google Scholar
  19. 19.
    Pierpaoli, C., Jezzard, P., Basser, P.J., Barbett, A., DiChiro, G.: Diffusion tensor imaging of the human brain. Radiology 201, 637–648 (1996)Google Scholar
  20. 20.
    Rohde, G.K., Barnett, A.S., Basser, P.J., Marenco, S., Pierpaoli, C.: A comprehensive approach for correcting motion and distortion in diffusion weighted MRI. In: Proc 21st Southern Biomedical Engineering Conference, Bethesda, MD (2002)Google Scholar
  21. 21.
    Basser, P.J., Mattiello, J., Lebihan, D.: MR Diffusion Tensor and Imaging. Biophysical Journal 66, 259–267 (1994)CrossRefGoogle Scholar
  22. 22.
    Basser, P.J.: New histological and physiological stains derived from diffusion-tensor MR images. Annals of the New York Academy of Sciences 820, 123–138 (1997)CrossRefGoogle Scholar
  23. 23.
    Pluim, J., Maintz, J., Viergever, M.: Interpolation artifacts in mutual informationbased image registration. Computer Vision and Image Understanding 77, 211–232 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • G. K. Rohde
    • 1
    • 3
  • S. Pajevic
    • 2
  • C. Pierpaoli
    • 1
  • P. J. Basser
    • 1
  1. 1.STBB/LIMB/NICHD 
  2. 2.National Institutes of HealthMSCL/CITBethesdaUSA
  3. 3.Dept. of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations