Digital Anatomy Atlas and Its Registration to MRI, fMRI, PET: The Past Presents a Future

  • Ruzena Bajcsy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2717)


The purpose of this paper is to review the past and present work in Digital Anatomy of the Human Brain and the registration methods developed for its use, then to extrapolate where the new open problems are, as well as the opportunities in this field. Of course, it will be a very personal review with the focus of my work and of my collaborators with reference to the many others who built upon this early effort.


Positron Emission Tomography Positron Emission Tomographic Computer Tomographic Diffusion Tensor Magnetic Resonance Imaging UCLA School 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor, A., Peter, K., Alan, S., Ruzena, B., Martin, R.: Computer Assisted Analysis of Tomographic Images of the Brain. Journal of Computer Assisted Tomography 5(6), 929–932 (1981)CrossRefGoogle Scholar
  2. 2.
    Daniel, A., James, G., Ruzena, B.: Similarity Measures for Matching Diffusion Tensor Images, University of Pennsylvania, Philadelphia, PA, pp. 93–102Google Scholar
  3. 3.
    Ruzena, B., Robert, L., Martin, R.: A Computerized System for the Elastic Matching of Deformed Radiographic Images to Idealized Atlas Images. Journal of Computer Assisted Tomography 7(4), 618–625 (1983)CrossRefGoogle Scholar
  4. 4.
    Ruzena, B.: Three-Dimensional Analysis and Display of Medical Images. Positron Emission Tomography, 119–129 (1985)Google Scholar
  5. 5.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE PAMI 11(6), 567–585 (1989)zbMATHGoogle Scholar
  6. 6.
    Briot, C.: Optimal Registration of Deformed Images. PhD dissertation, Computer and Information Science Department, University of Pennsylvania, Philadelphia (1981)Google Scholar
  7. 7.
    Robert, D., John, H., Stane, K., Martin, R., Ruzena, B.: Evaluation of Elastic Matching System for Anatomic (CT, MR) and Functional (PET) Cerebral Images. Journal of Computer Assisted Tomography 13(4), 603–611 (1989)CrossRefGoogle Scholar
  8. 8.
    Gee, J.C., Le Briquer, L., Barillot, C., Haynor, D.R.: Probabilistic Matching of Brain Images. In: Proceedings of the XIVth International Conference on Information Processing in Medical Imaging, Ile de Berder, France, June 26-30 (1995)Google Scholar
  9. 9.
    Greitz, T., Bohm, C., Holte, S., Eriksson, L.: A computerized brain atlas: construction, anatomical content and some applications. Journal of Computer Assisted Tomography 15, 26–38 (1991)CrossRefGoogle Scholar
  10. 10.
    Kikinas, et al. A Digital Brain Atlas for Surgical Planning, Model Driven Segmentation and Teaching. IEEE Transactions on Visualization and Computer Graphics 2(3) (September 1996),
  11. 11.
    John, M., Stephen, K.: Assessment of Goals and Obstacles in Data Acquisition and Analysis from Emission Tomography: Report of a Series of International Workshops. Journal of Cerebral Blood Flow and Metabolism 7, S1-S31 (1987)Google Scholar
  12. 12.
    Michael, M., Alain, T., Laurent, Y.: On the Metrics and Euler-Lagrange Equations of Computational Anatomy. Annual Rev. Biomed. Eng. 4, 375–405 (2002)CrossRefGoogle Scholar
  13. 13.
    Narr, K.L., Thompson, P.M., Sharma, T., Moussai, J., Zoumalan, C.I., Rayman, J., Mazziotta, J.C., Toga, A.W. (Schizophrenia Atlas Team).: Disease-Specific Atlases of the Human Brain. Laboratory of Neuro Imaging, Dept. Neurology, Division of Brain Mapping, UCLA School of Medicine, Los Angeles, CAGoogle Scholar
  14. 14.
    Pierpaoli, C., Basser, P.J.: Toward a Quantitative Assessment of Diffusion Anisotrophy. Magnetic Resonance Medicine 36, 893–906 (1996)CrossRefGoogle Scholar
  15. 15.
    Schaltenbrand, G., Wahren, W.: Atlas for Stereotaxy of the Human Brain. Chicago, Yearbook (1977)Google Scholar
  16. 16.
    Talairach, J., Szikla, G., Tournoux, P., et al.: Atlas d’anatomie stereotaxique du telecephale, Paris, Masson (1967)Google Scholar
  17. 17.
    Talairach, J., Tournoux, P.: Referentially oriented cerebral MRI Anatomy: an atlas of stereotaxic anatomical correlations for gray and white matter. Stuttgart, Thieme (1993)Google Scholar
  18. 18.
    Thompson, P.M., Mega, M.S., Dinov, I.D., Zoumalan, C.I., Lindshield, C.J., Blanton, R.E., Moussai, J., Woods, R.P., Mazziotta, J.C., Cummings, J.L., Toga, A.W.: Disease-Specific Atlases of the Human Brain. Laboratory of Neuro Imaging, Dept. Neurology, Division of Brain Mapping, UCLA School of Medicine, Los Angeles, CAGoogle Scholar
  19. 19.
    Thompson, P.M., Toga, A.W.: Detection, Visualization and Animation of Abnormal Anatomic Structure with a Deformable Probabilistic Brain Atlas Based on Random Vector Field Transformations, Dept. of Neurology, UCLA School of Medicine, Los Angeles, CAGoogle Scholar
  20. 20.
    Mette, W., Henrik, L., Van Wedeen: Fiber Crossing in Human Brain Depicted with Diffusion Tensor MR Imaging. Radiology  217(3), 897–903 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ruzena Bajcsy
    • 1
  1. 1.CITRIS (Center for Information Technology Research in the Interest of Society)University of CaliforniaBerkeleyUSA

Personalised recommendations