Advertisement

Smoothed Motion Complexity

  • Valentina Damerow
  • Friedhelm Meyer auf der Heide
  • Harald Räcke
  • Christian Scheideler
  • Christian Sohler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2832)

Abstract

We propose a new complexity measure for movement of objects, the smoothed motion complexity. Many applications are based on algorithms dealing with moving objects, but usually data of moving objects is inherently noisy due to measurement errors. Smoothed motion complexity considers this imprecise information and uses smoothed analysis [13] to model noisy data. The input is object to slight random perturbation and the smoothed complexity is the worst case expected complexity over all inputs w.r.t. the random noise. We think that the usually applied worst case analysis of algorithms dealing with moving objects, e.g., kinetic data structures, often does not reflect the real world behavior and that smoothed motion complexity is much better suited to estimate dynamics.

We illustrate this approach on the problem of maintaining an orthogonal bounding box of a set of n points in ℝ d under linear motion. We assume speed vectors and initial positions from [-1,1] d . The motion complexity is then the number of combinatorial changes to the description of the bounding box. Under perturbation with Gaussian normal noise of deviation σ the smoothed motion complexity is only polylogarithmic: O(d ·(1 + 1/σ) ·log n 3/2) and \(\Omega (d \cdot \sqrt{log n})\). We also consider the case when only very little information about the noise distribution is known. We assume that the density function is monotonically increasing on ℝ ≤ 0 and monotonically decreasing on ℝ ≥ 0 and bounded by some value C. Then the motion complexity is \(O(\sqrt{n log n \cdot C} + log n)\) and \(\Omega (d \cdot min\{\sqrt[5]{n}/\sigma , n\})\).

Keywords

Randomization Kinetic Data Structures Smoothed Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P., Har-Peled, S.: Maintaining approximate extent measures of moving points. In: Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 148–157 (2001)Google Scholar
  2. 2.
    Banderier, C., Mehlhorn, K., Beier, R.: Smoothed analysis of three combinatorial problems (2002) (manuscript)Google Scholar
  3. 3.
    Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 82–91 (1999)Google Scholar
  4. 4.
    Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. Journal of Algorithms 31(1), 1–28 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Basch, J., Guibas, L.J., Zhang, L.: Proximity problems on moving points. In: Proceedings of the 13th Annual ACM Symposium on Computational Geometry, pp. 344–351 (1997)Google Scholar
  6. 6.
    Blum, A., Dunagan, J.: Smoothed analysis of the perceptron algorithm. In: Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 905–914 (2002)Google Scholar
  7. 7.
    Guibas, L.J., Hershberger, J., Suri, S., Zhang, L.: Kinetic connectivity for unit disks. Discrete & Computational Geometry 25(4), 591–610 (2001)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Har-Peled, S.: Clustering motion. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 84–93 (2001)Google Scholar
  9. 9.
    Hershberger, J., Suri, S.: Simplified kinetic connectivity for rectangles and hypercubes. In: Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 158–167 (2001)Google Scholar
  10. 10.
    Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic collision detection for simple polygons. International Journal of Computational Geometry and Applications 12(1-2), 3–27 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Zentralblatt für Wahrscheinlichkeitstheorie und verwandte Gebiete 2, 75–84 (1963)zbMATHCrossRefGoogle Scholar
  12. 12.
    Sankar, A., Spielman, D., Teng, S.: Smoothed analysis of the condition numbers and growth factors of matrices (2002) (manuscript)Google Scholar
  13. 13.
    Spielman, D., Teng, S.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. In: Proceedings of the 33rd ACM Symposium on Theory of Computing (STOC), pp. 296–305 (2001)Google Scholar
  14. 14.
    Spielman, D., Teng, S.: Smoothed analysis of property testing (2002) (manuscript)Google Scholar
  15. 15.
    Zhang, L., Devarajan, H., Basch, J., Indyk, P.: Probabilistic analysis for combinatorial functions of moving points. In: Proceedings of the 13th Annual ACM Symposium on Computational Geometry, pp. 442–444 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Valentina Damerow
    • 1
  • Friedhelm Meyer auf der Heide
    • 2
  • Harald Räcke
    • 2
  • Christian Scheideler
    • 3
  • Christian Sohler
    • 2
  1. 1.PaSCo Graduate SchoolGermany
  2. 2.Heinz Nixdorf InstitutePaderborn UniversityPaderbornGermany
  3. 3.Dept. of Computer ScienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations