Advertisement

Large Transport Aircraft Wake Vortex Affected by Vortex Devices

  • C. Bellastrada
  • C. Breitsamter
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 87)

Summary

The results of a wind tunnel investigation on the wake vortex evolution behind a half-model of a four-engined large transport aircraft in high-lift configuration, with and without vortex devices, are presented. The wake is measured by means of advanced hot-wire anemometry up to 5.6 span distances downstream of the model. Results obtained include velocity, vorticity and turbulence intensity fields. The measured data are evaluated in order to establish and test possible wake vortex strength alleviation strategies.

Keywords

Reference Configuration Wake Vortex Merging Process Axial Vorticity Peak Vorticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Breitsamter C., Bellastrada C., Laschka B.: Investigations on the Turbulent Wake Vortex Flow of Large Transport Aircraft. Proc. ICAS 2002 Congress, Toronto, Canada, September, 2002, pp. 382. 1–382. 13.Google Scholar
  2. [2]
    Coustols E., de Saint-Victor X.: Wake Vortex Dynamics: from Characterisation to Control. Proc. 3rd ONERA-DLR Aerospace Symposium, Paris, June, 2001, SI-2 pp. 1–14.Google Scholar
  3. [3]
    Crouch J.D., Miller G., Spalart P.R.: Airplane Trailing Vortices. Boeing Aero-Magazine, No. 14, April, 2001, pp. 1–8.Google Scholar
  4. [4]
    Gerz T., Holza.epfel F., Darracq D.: Aircraft Wake Vortices - A Position Paper. WakeNet - The European Thematic Network on Wake Vortex, April, 2001.Google Scholar
  5. [5]
    Hinton D.A.: An Aircraft Vortex Spacing System (AVOSS) for Dynamical Wake Vortex Spacing Criteria. AGARD–CP–584, Trondheim, Norway, May, 1996, pp. 23–1–23–12.Google Scholar
  6. [6]
    Leweke T., Meunier P., Laporte F., Darracq D.: Controlled Interaction of Co-rotating Vortices. Proc. 3rd ONERA-DLR Aerospace Symposium, Paris, June, 2001, S1–2 pp. 1–14.Google Scholar
  7. [7]
    Ozger E., Schell I., Jacob D.: On the Structure and Attenuation of an Aircraft Wake. J. Aircraft, Vol. 38, No. 5, 2001, pp. 878–887.CrossRefGoogle Scholar
  8. [8]
    Ortega J.M., Bristol R.L., Savas O.: Wake Alleviation Properties of Triangular-Flapped Wings, AIAA Journal, Vol. 40, No. 4, 2002, pp. 709–721.CrossRefGoogle Scholar
  9. [9]
    Rossow V.J.: Reduction of Uncertainties in Prediction of Wake-Vortex Locations. J. Aircraft, Vol. 39, No. 4, 2002, pp. 587–596.CrossRefGoogle Scholar
  10. [10]
    Spalart P.R.: Airplane Trailing Vortices. Ann. Rev. Fluid Mech., Vol. 30, 1998, pp. 107–138.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • C. Bellastrada
    • 1
  • C. Breitsamter
    • 1
  1. 1.Lehrstuhl für FluidmechanikTechnische Universität MünchenGarchingGermany

Personalised recommendations