Simultaneous Row and Column Partitioning: Evaluation of a Heuristic

  • Gilbert Ritschard
  • Djamel A. Zighed
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2871)


This paper is concerned with the determination, in a cross table, of the simultaneous merging of rows and columns that maximizes the association between the row and column variables. We present a heuristic, first introduced in [2], and discuss its reliability. The heuristic reduces drastically the complexity of the exhaustive scanning of all possible groupings. Reliability is assessed by means of a series of simulation runs. The outcomes reported show that though the quasi optima may often miss the true global optima, they provide very close solutions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Olszak, M., Ritschard, G.: The behaviour of nominal and ordinal partial association measures. The Statistician 44, 195–212 (1995)CrossRefGoogle Scholar
  2. 2.
    Ritschard, G., Nicoloyannis, N.: Aggregation and association in cross tables. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 593–598. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Ritschard, G., Zighed, D.A., Nicoloyannis, N.: Maximisation de l’association par regroupement de lignes ou colonnes d’un tableau croisé. Revue Mathématiques Sciences Humaines 39, 81–97 (2001)Google Scholar
  4. 4.
    Zighed, D.A., Rabaseda, S., Rakotomalala, R., Feschet, F.: Discretization methods in supervised learning. Encyclopedia of Computer Science and Technology 40, 35–50 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gilbert Ritschard
    • 1
  • Djamel A. Zighed
    • 2
  1. 1.Dept of EconometricsUniversity of GenevaGeneva 4Switzerland
  2. 2.Laboratoire ERICUniversity of Lyon 2Bron CedexFrance

Personalised recommendations