Contextual Random Boolean Networks

  • Carlos Gershenson
  • Jan Broekaert
  • Diederik Aerts
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)

Abstract

We propose the use of Deterministic Generalized Asynchronous Random Boolean Networks [1] as models of contextual deterministic discrete dynamical systems. We show that changes in the context have drastic effects on the global properties of the same networks, namely the average number of attractors and the average percentage of states in attractors. We introduce the situation where we lack knowledge on the context as a more realistic model for contextual dynamical systems. We notice that this makes the network non-deterministic in a specific way, namely introducing a non-Kolmogorovian quantum-like structure for the modelling of the network [2]. In this case, for example, a state of the network has the potentiality (probability) of collapsing into different attractors, depending on the specific form of lack of knowledge on the context.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gershenson, C.: Classification of random boolean networks. In: Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.) Artificial Life VIII: Proceedings of the Eight International Conference on Artificial Life, pp. 1–8. MIT Press, Massachussets (2002)Google Scholar
  2. 2.
    Aerts, D.: A Possible Explanation for the Probabilities of Quantum Mechanics. J. Math. Phys. 27, 202–210 (1986)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Wuensche, A.: Attractor Basins of Discrete Networks. PhD thesis, University of Sussex, CSRP 461 (1997)Google Scholar
  4. 4.
    Wuensche, A.: Attractor Basins of Discrete Networks. Technical report, SFI, 11–101 (1998)Google Scholar
  5. 5.
    Aldana, M., Coppersmith, S., Kadanoff, L.P.: Boolean Dynamics with Random Couplings. Accepted for publication in Springer Applied Mathematical Sciences Series, Celebratory Volume for the Occasion of the 70th birthday of Larry Sirovich (2002)Google Scholar
  6. 6.
    Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)Google Scholar
  7. 7.
    Harvey, I., Bossomaier, T.: Time Out of Joint, Attractors in Asynchronous Random Boolean Networks. In: Husbands, P., Harvey, I. (eds.) Proceedings of the Fourth European Conference on Artificial Life (ECAL 1997), pp. 67–75. MIT Press, Cambridge (1997)Google Scholar
  8. 8.
    Di Paolo, E.A.: Rhythmic and Non-Rhythmic Attractors in Asynchronous Random Boolean Networks. Biosystems 59, 185–195 (2001)CrossRefGoogle Scholar
  9. 9.
    Aerts, D.: Quantum Structures Due To Fluctuations of the Measurement Situations. Int. J. Theor. Phys. 32, 2207–2220 (1993)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Aerts, D.: Quantum structures: An Attempt to Explain Their Appearance In Nature. Int. J. Theor. Phys. 34, 1165–1186 (1995); Archive Ref and Link: quantph/ 0111071MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Aerts, D.: The Hidden Measurement Formalism: What Can Be Explained And Where Paradoxes Remain. Int. J. Theor. Phys. 37, 291–304 (1998); Archive Ref and Link: quant- ph/0105126MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Aerts, D.: Being and Change: Foundations of a Realistic Operational Formalism. In: Aerts, D., Czachor, M., Durt, T. (eds.) Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics, pp. 71–110. World Scientific, Singapore (2002)CrossRefGoogle Scholar
  13. 13.
    Aerts, D., Aerts, S.: Applications of Quantum Statistics in Psychological Studies of Decision Processes. Found. Sc. 1, 85–97 (1994)MathSciNetGoogle Scholar
  14. 14.
    Aerts, D., Broekaert, J., Smets, S.: A Quantum Structure Description of the Liar Paradox. Int. J. Theor. Phys. 38, 3231–3239 (1999); Archive Ref and Link: quant-ph/0106131MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Aerts, D., Aerts, S., Broekaert, J., Gabora, L.: The Violation of Bell Inequalities in the Macroworld. Found. Phys. 30, 1387–1414 (2000)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Aerts, D., Broekaert, J., Gabora, L.: A Case For Applying an Abstracted Quantum Formalism to Cognition (2003) (forthcoming)Google Scholar
  17. 17.
    Gabora, L., Aerts, D.: Contextualizing Concepts Using a Mathematical Generalization of the Quantum Formalism. J. Exp. Theor. Art. Int. 14, 327–358 (2002)MATHCrossRefGoogle Scholar
  18. 18.
    Gabora, L.: Cognitive Mechanisms Underlying the Origin and Evolution of Culture. PhD thesis, Brussels Free University (2001)Google Scholar
  19. 19.
    Aerts, D., Czachor, M., Gabora, L., Kuna, M., Posiewnik, A., Pykacz, J., Syty, M.: Quantum Morphogenesis: A Variation on a Theme by R. Thom. Accepted in Phys. Rev. E (2003)Google Scholar
  20. 20.
    Kauffman, S.A.: Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets. J. Theor. Biol. 22, 437–467 (1969)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Cornforth, D., Green, D.G., Newth, D., Kirkley, M.: Do Artificial Ants In Step? Ordered Asynchronous Processes and Modularity in Biological Systems. In: Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.) Artificial Life VIII: Proceedings of the Eight International Conference on Artificial Life, March 2002, pp. 28–32. MIT Press, Cambridge (2002)Google Scholar
  22. 22.
    Ingber, D.E.: The Architecture of Life. Scientific American 278, 48–57 (1998)CrossRefGoogle Scholar
  23. 23.
    Aerts, D., Durt, T.: Quantum. Classical and Intermediate, An Illustrative Example. Found. Phys. 24, 1353–1369 (1994)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Aerts, D., Valckenborgh, F.: The Linearity of Quantum Mechanics at stake: the description of separated quantum entities. In: Aerts, D., Czachor, M., Durt, T. (eds.) Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics, pp. 20–46. World Scientific, Singapore (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Carlos Gershenson
    • 1
  • Jan Broekaert
    • 1
  • Diederik Aerts
    • 1
  1. 1.Centrum Leo ApostelVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations