Does the Red Queen Reign in the Kingdom of Digital Organisms?

  • Claus O. Wilke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)


I investigate the competition dynamics between two identical clones of digital organisms, for three sets of clones taken from different locations in the fitness landscape. When the clones are taken from the base of a fitness peak, such that beneficial mutations are abundant, then both gain in fitness during the competition (Red Queen effect), until eventually one clone drives the other to extinction. When beneficial mutations are rare or completely absent, on the other hand, then either the clone that finds a beneficial mutation first wins, or the clone that loses the highest-fitness mutant first loses the competition. The time until one of the two strains dies out is in general shorter in the Red Queen case than in the other cases. I discuss the relevance of my findings for competition studies with RNA viruses.


Competition Experiment Beneficial Mutation Extinction Time Identical Clone Typical Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, D.K., Duarte, E.A., Elena, S.F., Moya, A., Domingo, E., Holland, J.: The red queen reigns in the kingdom of RNA viruses. Proc. Natl. Acad. Sci. USA 91, 4821–4824 (1994)CrossRefGoogle Scholar
  2. 2.
    Quer, J., Huerta, R., Novella, I.S., Tsimring, L., Domingo, E., Holland, J.J.: Reproducible nonlinear population dynamics and critical points during replicative competitions of RNA virus quasispecies. J. Mol. Biol. 264, 465–471 (1996)CrossRefGoogle Scholar
  3. 3.
    Hardin, G.: The competitive exclusion principle. Science 131, 1292–1297 (1960)CrossRefGoogle Scholar
  4. 4.
    van Valen, L.: A new evolutionary law. Evol. Theory 1, 1–30 (1973)Google Scholar
  5. 5.
    Ridley, M.: The Red Queen: Sex and the Evolution of Human Nature. MacMillan, NYC (1994)Google Scholar
  6. 6.
    Solé, R.V., Ferrer, R., González-García, I., Quer, J., Domingo, E.: Red queen dynamics, competition and critical points in a model of RNA virus quasispecies. J. theor. Biol. 198, 47–59 (1999)CrossRefGoogle Scholar
  7. 7.
    Kauffman, S.: Origins of Order. Oxford University Press, Oxford (1990)Google Scholar
  8. 8.
    Eigen, M., Schuster, P.: The Hypercycle–A Principle of Natural Self- Organization. Springer, Berlin (1979)Google Scholar
  9. 9.
    Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi-species. J. Phys. Chem. 92, 6881–6891 (1988)CrossRefGoogle Scholar
  10. 10.
    Tsimring, L.S., Levine, H., Kessler, D.A.: RNA virus evolution via a fitnessspace model. Phys. Rev. Lett. 76, 4440–4443 (1996)CrossRefGoogle Scholar
  11. 11.
    Rouzine, I.M., Wakeley, J., Coffin, J.M.: The solitary wave of asexual evolution. Proc. Natl. Acad. Sci. USA 100, 587–592 (2003)CrossRefGoogle Scholar
  12. 12.
    Novella, I.S., Duarte, E.A., Elena, S.F., Moya, A., Domingo, E., Holland, J.J.: Exponential increases of RNA virus fitness during large population transmissions. Proc. Natl. Acad. Sci. USA 92, 5841–5844 (1995)CrossRefGoogle Scholar
  13. 13.
    Lenski, R.E., Travisano, M.: Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Nat. Acad. Sci. USA 91, 6808–6814 (1994)CrossRefGoogle Scholar
  14. 14.
    Elena, S.F., Cooper, V.S., Lenski, R.E.: Punctuated evolution caused by selection of rare beneficial mutations. Science 272, 1802–1804 (1996)CrossRefGoogle Scholar
  15. 15.
    Fontana, W., Schuster, P.: Continuity in evolution: On the nature of transitions. Nature 280, 1451–1455 (1998)Google Scholar
  16. 16.
    van Nimwegen, E., Crutchfield, J.P., Mitchell, M.: Statistical dynamics of the royal road genetic algorithm. Theoretical Computer Science 229, 41–102 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wilke, C.O., Adami, C.: The biology of digital organisms. Trends. Ecol. Evol. 17, 528–532 (2002)CrossRefGoogle Scholar
  18. 18.
    Ray, T.: An approach to the synthesis of life. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, pp. 371–408. Addison-Wesley, Reading (1991)Google Scholar
  19. 19.
    Adami, C.: Introduction to Artificial Life. Springer, New York (1998)zbMATHGoogle Scholar
  20. 20.
    Lenski, R.E., Ofria, C., Collier, T.C., Adami, C.: Genome complexity, robustness and genetic interactions in digital organisms. Nature 400, 661–664 (1999)CrossRefGoogle Scholar
  21. 21.
    Adami, C., Ofria, C., Collier, T.C.: Evolution of biological complexity. Proc. Natl. Acad. Sci. USA 97, 4463–4468 (2000)CrossRefGoogle Scholar
  22. 22.
    Wilke, C.O., Wang, J.L., Ofria, C., Lenski, R.E., Adami, C.: Evolution of digital organisms at high mutation rate leads to survival of the flattest. Nature 412, 331–333 (2001)CrossRefGoogle Scholar
  23. 23.
    Kingman, J.F.C.: On the genealogy of large populations. J. Appl. Prob. 19A, 27–43 (1982)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Griffiths, R.C.: Lines of descent in the diffusion-approximation of neutral Wright- Fisher models. Theor. Pop. Biol. 17, 37–50 (1980)zbMATHCrossRefGoogle Scholar
  25. 25.
    Donnelly, P.: The transient behaviour of the Moran model in population genetics. Math. Proc. Cambridge Philos. Soc. 95, 349–358 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tavaré, S.: Line-of-descent and genealogical processes, and their applications in population genetics models. Theor. Pop. Biol. 26, 119–164 (1984)zbMATHCrossRefGoogle Scholar
  27. 27.
    Lynch, M., Gabriel, W.: Mutation load and the survival of small populations. Evolution 44, 1725–1737 (1990)CrossRefGoogle Scholar
  28. 28.
    Crow, J.F., Kimura, M.: An Introduction to Population Genetics Theory. Harper & Row, New York (1970)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Claus O. Wilke
    • 1
  1. 1.Digital Life Laboratory 136-93California Institute of TechnologyPasadenaUSA

Personalised recommendations