Advertisement

On the Dynamics of an Artificial Regulatory Network

  • Wolfgang Banzhaf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)

Abstract

We investigate a simple artificial regulatory networks (ARNs) able to reproduce phenomena found in natural genetic regulatory networks. Notably heterochrony, a variation in timing of expression, is easily achievable by simple mutations of bits in the genome. It is argued that ARNs are useful and important new genetic representations for artificial evolution.

Keywords

Regulatory Network Genetic Program Regulatory Site Maximum Match Cellular Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banzhaf, W.: Artificial Regulatory Networks and Genetic Programming. In: Riolo, R.L., et al. (eds.) Genetic Programming – Theory and Applications (2003) (to appear)Google Scholar
  2. 2.
    Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming – An Introduction. Morgan Kaufmann, San Francisco (1998)zbMATHGoogle Scholar
  3. 3.
    Bongard, J., Pfeifer, R.: Behavioral selection pressure generates hierarchical genetic regulatory networks. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, p. 132. Morgan Kaufmann, San Francisco (2002)Google Scholar
  4. 4.
    Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001)Google Scholar
  5. 5.
    Davidson, E.H.: Genomic Regulatory Systems. Academic Press, San Diego (2001)Google Scholar
  6. 6.
    Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Harvey, I., Husbands, P. (eds.) Proceedings of the 4th European Conference on Artificial Life, pp. 205–213. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Fogel, D.B.: Evolutionary Computation. IEEE Press, New York (1995)Google Scholar
  8. 8.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through a simulation of evolution. In: Maxfield, M., Callahan, A., Fogel, L.J. (eds.) Biophysics and Cybernetic Systems, pp. 131–155 (1965)Google Scholar
  9. 9.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  10. 10.
    Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, Reading (1997)Google Scholar
  11. 11.
    Holland, J.H.: Adaptation in natural and artificial system. MIT Press, Cambridge (1992)Google Scholar
  12. 12.
    Hood, L., Galas, D.: The digital code of dna. Nature 421, 444–448 (2003)CrossRefGoogle Scholar
  13. 13.
    Kargupta, H.: Editorial: Special Issue on Computation in Gene Expression. Genetic Programming and Evolvable Machines 3, 111–112 (2002)CrossRefGoogle Scholar
  14. 14.
    Kennedy, P.J., Osborn, T.R.: A model of gene expression and regulation in an artificial cellular organism. Complex Systems, 13 (2001)Google Scholar
  15. 15.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  16. 16.
    McKinney, M.: Heterochrony: Beyond words. Paleobiology 25, 149–153 (1999)Google Scholar
  17. 17.
    McKinney, M., McNamara, K.: Heterochrony: The Evolution of Ontogeny. Plenum Press, New York (1991)Google Scholar
  18. 18.
    Neidhardt, F.C.: Escherichia Coli and Salmonella typhimurium. ASM Press, Washington (1996)Google Scholar
  19. 19.
    Rechenberg, I.: Evolutionsstrategie 1993. Frommann Verlag, Stuttgart (1994)Google Scholar
  20. 20.
    Reil, T.: Dynamics of gene expression in an artificial genome - implications for biological and artificial ontogeny. In: Floreano, D., et al. (eds.) Proceedings of the 5th European Conference on Artificial Life, pp. 457–466. Springer, Heidelberg (1999)Google Scholar
  21. 21.
    Schwefel, H.-P.: Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. John Wiley & Sons, Inc., New York (1995)Google Scholar
  22. 22.
    Thomas, G.H.: Completing the e. coli proteome: a database of gene products characterised since completion of the genome sequence. Bioinformatics 7, 860–861 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wolfgang Banzhaf
    • 1
  1. 1.Department of Computer ScienceUniversity of DortmundDortmundGermany

Personalised recommendations