Production of Gliders by Collisions in Rule 110

  • Genaro Juárez Martínez
  • Harold V. McIntosh
  • Juan Carlos Seck Tuoh Mora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2801)

Abstract

We investigate the construction of all the periodic structures or “gliders” up to now known in the evolution space of the one-dimensional cellular automaton Rule 110. The production of these periodic structures is developed and presented by means of glider collisions. We provide a methodology based on the phases of each glider to establish the necessary conditions for controlling and displaying the collisions of gliders from the initial configuration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamatzky, A. (ed.): Collision-Based Computing. Springer, Heidelberg (2002); ISBN 1- 85233-540-8MATHGoogle Scholar
  2. 2.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical Plays, vol. 2, ch. 25. Academic Press, London (1982); ISBN 0-12-091152-3MATHGoogle Scholar
  3. 3.
    Cook, M.: Universality in Elementary Cellular Automata. personal communicationGoogle Scholar
  4. 4.
    Cook, M.: Introduction to the activity of rule 110 (copyright 1994-1998 Matthew Cook) (January 1999), http://w3.datanet.hu/~cook/Workshop/CellAut/Elementary/Rule110/110pics.html
  5. 5.
    Cook, M.: Still Life Theory. In: New Constructions in Cellular Automata (Santa Fe Institute Studies on the Sciences of Complexity), p. 93. Oxford University Press, Oxford (April 2003); ISBN 0-1951-3717-5Google Scholar
  6. 6.
    Gardner, M.: Mathematical Games – The fantastic combinations of John H. Conway’s new solitaire game Life. Scientific American 223, 120–123 (1970)CrossRefGoogle Scholar
  7. 7.
    Giles, J.: What kind of science is this? Nature 417, 216–218 (2002)CrossRefGoogle Scholar
  8. 8.
    Martínez, G.J.: Fases fi_i en la Regla 110, en preparaciónGoogle Scholar
  9. 9.
    Martínez, G.J.: Solitones en el autómata celular unidimensional Regla 110, April 8 (2002), http://delta.cs.cinvestav.mx/~mcintosh/oldweb/working.html
  10. 10.
    Martínez, G.J., McIntosh, H.V.: ATLAS: Collisions of gliders like phases of ether in rule 110 (August 2001), http://delta.cs.cinvestav.mx/~mcintosh/comun/s2001/s2001.html
  11. 11.
    Martínez, G.J., McIntosh, H.V., Mora, J.C.S.T.: Estructuras periódicas cubriendo el espacio de evoluciones en el autómata celular unidimensional Regla 110 Abril 8 (2002), http://delta.cs.cinvestav.mx/~mcintosh/oldweb/working.html
  12. 12.
    Martínez, G.J., Mora, J.C.S.T., McIntosh, H.V.: Reproducing the cyclic tag systems developed by Matthew Cook with Rule 110 using the phases f\(_{i_ i}\) (in preparation)Google Scholar
  13. 13.
    Jakubowski, M.H., Steiglitz, K., Squier, R.: Computing with Solitons: A Review and Prospectus. Multiple-Valued Logic, Special Issue on Collision- Based Computing 6(5,6) (2001); ISSN 1023-6627Google Scholar
  14. 14.
    McIntosh, H.V.: Linear cellular automata via de Bruijn diagrams (1991), http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pautomata.html
  15. 15.
    McIntosh, H.V.: Rule 110 as it relates to the presence of gliders (January 1999), http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pautomata.html
  16. 16.
    McIntosh, H.V.: A Concordance for Rule 110 April (2000), http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pautomata.html
  17. 17.
    McIntosh, H.V.: Rule 110 Is Universal! June 30 (2002), http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pautomata.html
  18. 18.
    Park, J.K., Steiglitz, K., Thurston, W.P.: Soliton-like behavior in automata. Physica D 19, 423–432 (1986)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Rusell, J.S.: Report of Waves, Re. Brit. Assoc. for the Advancement of Science, 311–390 (1844)Google Scholar
  20. 20.
    von Neumann, J.: Theory of Self-reproducing Automata, University of Illinois Press, Urbana and London (1966)Google Scholar
  21. 21.
    Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific Press, Singapore (1986)MATHGoogle Scholar
  22. 22.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Inc, Champaign (2002); ISBN 1-57955-008-8MATHGoogle Scholar
  23. 23.
    Wuensche, A.: Classifying Cellular Automata Automatically. Complexity 4(3), 47–66 (1999)CrossRefMathSciNetGoogle Scholar
  24. 24.
    “OSXLCAU21” system is available for OpenStep and Mac OS X operating systems in (August. 2001), http://delta.cs.cinvestav.mx/~mcintosh/comun/s2001/s2001.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Genaro Juárez Martínez
    • 1
  • Harold V. McIntosh
    • 2
  • Juan Carlos Seck Tuoh Mora
    • 3
  1. 1.Departamento de Ingeniería EléctricaSección Computación, CINVESTAV-IPNSan Pedro Zacatenco
  2. 2.Departamento de Aplicación de Microcomputadoras, Instituto de CienciasUniversidad Autónoma de PueblaPueblaMéxico
  3. 3.Centro de Investigación Avanzada en Ingeniería IndustrialUniversidad Autónoma del Estado de HidalgoPachuca HidalgoMéxico

Personalised recommendations