Erratum: Langlands’s Construction of the Taniyama Group

  • J. S. Milne
  • K. -y. Shih
Part of the Lecture Notes in Mathematics book series (LNM, volume 900)


In this article we give a detailed description of Langlands’s construction of his Taniyama group. The first section reviews the definition and properties of the Serre group, and the following section discusses extensions of Galois groups by the Serre group. The construction itself is carried out in the third section, which also contains additional material required for V.


  1. 1.
    Deligne, P. La conjecture de Weil pour les surfaces K3, Invent. Math. 15 (1972) 206–226.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Deligne, P. Variétés de Shimura: interpretation modulaire, et techniques de construction de modèles canoniques. Proc. Symp. Pure Math., A.M.S., 33 (1979) part 2, 247–290.CrossRefGoogle Scholar
  3. 1.
    Demazure, M. et Gabriel, P. Groupes Algébriques, Tome I: Géométrie algébriques, generalités, groupes commutatifs. Masson, Paris, 1979.zbMATHGoogle Scholar
  4. 1.
    Langlands, R. Automorphic representations, Shimura varieties, and motives. Ein Märchen. Proc. Symp. Pure Math., A.M.S., 33 (1979), part 2, 205–246.MathSciNetCrossRefGoogle Scholar
  5. 1.
    Serre, J.-P. Abelian ℓ-adic representations and elliptic curves. Benjamin, New York, 1968.Google Scholar
  6. 1.
    Tate, J. The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J. 27 (1966) 709–719.MathSciNetCrossRefGoogle Scholar
  7. 2.
    Tate, J. Number theoretic background, Proc. Symp. Pure Math. A.M.S., 33 (1979) part 2, 3–26.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • J. S. Milne
  • K. -y. Shih

There are no affiliations available

Personalised recommendations