Advertisement

Class-Numbers of Complex Quadratic Fields

  • H. M. Stark
Part of the Lecture Notes in Mathematics book series (LNM, volume 320)

Abstract

Let E be an elliptic curve
$$ y^2 = 4x^3 - g_2 x - g_3 ,\Delta = g_2^3 - 27g_3^2 \ne 0, $$
in Weierstrass normal form. The curve may be parametrized by the Weierstrass ℘-function, x = ℘(z), y = ℘′(z). The function ℘(z) is a doubly periodic function whose periods form a lattice
$$ \Lambda = \{ \omega _1 ,\omega _2 \} = \{ a\omega _1 + b\omega _2 |a,b \in \mathbb{Z}\} $$
where ω12 ∉ ℝ and for convenience we assume that ω1 and ω2 are so ordered that Im(ω12) > 0. We then have the relations
$$ g_2 = 60\sum\limits_\omega {'\omega ^{ - 4} } ,g_3 = 140\sum\limits_\omega {'\omega ^{ - 6} } , $$
(1)
where the summations are over all ω ∈ Λ other than ω = 0, and
$$ \wp (z) = \frac{1} {{z^2 }} + \frac{{g_2 }} {{20}}z^2 + \frac{{g_3 }} {{28}}z^4 + \frac{{g_2^2 }} {{1200}}z^6 + .... $$
(2)
.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. J. BIRCH: Diophantine analysis and modular functions, in Algebraic Geometry, Oxford (1969), 35–42.Google Scholar
  2. [2]
    _____: Weber’s class invarients, Mathematika 16 (1969), 283–294.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    MAX DEURING: Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins, Invent. Math., 5 (1968), 169–179.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    KURT HEEGNER: Diophantische Analysis und Modulfunktionen, Math. Z., 56 (1952), 227–253.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    H. M. STARK: On the “gap” in a theorem of Heegner, J. Number Theory 1 (1969), 16–27.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    _____: Class-number problems in quadratic fields, in Proc. of the International Congress in Nice 1970, Vol. 1, 511–518.Google Scholar
  7. [7]
    _____: Values of L-functions at s = 1 (I). L-functions for quadratic forms, Advances in Math. 7 (1971), 301–343.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    H. P. F. SWINNERTON-DYER: Applications of algebraic geometry to number theory, in Proc. Symposia in Pure Mathematics vol. 20, Amer. Math. Soc., Providence, 1971, 1–52.Google Scholar
  9. [9]
    H. WEBER: Lehrbuch der Algebra, vol. 3, 3rd ed., Chelsea, New York (1961) (reprint of the 1908 edition).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • H. M. Stark
    • 1
  1. 1.Dept. of MathematicsMassachusetts Institute of TechnologyCambridge

Personalised recommendations